

DEPARTMENT OF ENERGY SCIENCE M.Sc., Energy Science

REGULATIONS AND SYLLABUS [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle andGraded as Category-I University by MHRD-UGC) Karaikudi -630003, Tamil Nadu.

The panel of Members-Broad Based Board of Studies

ALAGAPPA UNIVERSITY DEPARTMENT OF ENERGY SCIENCE

Karaikudi -630003, Tamil Nadu.

REGULATIONS AND SYLLABUS-(CBCS-University Department)

[For the candidates admitted from the Academic Year 2022–2023 onwards]

Name of the Department	:	Energy Science
Name of the Programme	:	M.Sc., Energy Science
Duration of the Programme	:	Full Time (Two Years)

Name of the Programme

The programme is named as **Master of Science (M.Sc.) in Energy Science**. The syllabus for this programme is framed under the rules of the Choice Based Credit System (CBCS) of this University and both Core and Elective courses were incorporated as its components. The CBCS enables the students to select variety of subjects as per their interest and requirement. Acquiring knowledge in the related fields is advantageous to the students. Fast learners can earn more credits than the stipulated minimum of 90 credits.

Semesters

An Academic year is divided into two **Semesters**. In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and valuation purposes. Each week has 30 working hours spread over 5 days a week.

Medium of Instruction

The medium of instruction is English.

Departmental Committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance tests, verification of records, admission, and evaluation. The Departmental Committee determines the deliberation of courses and specifies the allocation of credits semester-wise and course-wise. For each course, it will also identify the number of credits for lectures, tutorials, practicals, seminars etc. The courses (Core/Discipline Specific Elective/Non-Major Elective) are designed by teachers and approved by the Departmental Committees. Courses approved by the Departmental Committees shall be approved by the Board of Studies/Broad Based Board of Studies. A teacher offering a course will also be responsible for maintaining attendance and performance sheets (CIA-I, CIA-II, assignments and seminar) of all the students registered for the course. The Non-Major elective programme, MOOCs coordinator and Internship Mentor are responsible for submitting the performance sheet to the Head of the department. The Head of the Department consolidates all such performance sheets of courses pertaining to the programmes offered by the department. Then forward the same to be Controller of Examinations.

Programme Educational Objectives (PEOs)

PEO1	To mould students to excel in the workplace, higher education, research, and all aspects of science and technology.	
PEO2	To impart the essential background knowledge related to energy science by providing a solid foundation in physics, chemistry and materials science.	
PEO3	To equip students with a broad understanding of energy science concepts in order to develop new solutions that will benefit society.	
PEO4	To prepare the students with the multifaceted skills required for advanced research, employment and successful entrepreneurship with a strong ethical foundation.	
PEO5	To provide a better learning environment with state-of-art facilities that inspire and nurture the students to grow into successful professionals in the real world.	
PEO6	To impart theoretical and practical knowledge in energy science concepts.	
PEO7	To prepare the students to perform higher order skills and knowledge in higher studies, and the workplace.	
PEO8	To equip students to understand the value of energy resources in order to proper utilization of resources.	
PEO9	To impart the recent developments in the scientific domain, particularly in the field of energy and environment.	
PE10	To prepare the students to contribute to the building of a nation and the development of the world.	

Programme Specific Objectives (PSOs)

PSO1	To understand the fundamental scientific knowledge to solve problems		
1501	associated with energy and the environment.		
PSO2 To develop an appropriate methodology, and approach related to E			
1302	Science.		
PSO3	To develop problem-solving abilities to resolve real-world problems.		
PSO4 To understand the noteworthy knowledge related to energy science			
entrepreneurship, research, and placement.			
PSO5	To apply fundamental knowledge of physics, chemistry and materials science		
1303	concepts in the energy sector and other related disciplines.		

Programme	Outcomes	(POs)	
Programme	Outcomes	(PU	5)

POs	Graduate Attributes	Programme Outcome		
PO1	Scientific knowledge	Apply the knowledge of physics, chemistry and materials science.		
PO2	Design/development of solutions	Design and develop appropriate solutions/processes for the advancement of the energy sector and other related disciplines.		
PO3	Problem analysis	Identify, articulate, analyze and solve the issues related to energy and environment.		
PO4	Modern tools usage	Understand and apply various tools and techniques for the fabrication and analysis of materials.		
PO5	Contribution to society	Analyze and address societal challenges associated with energy and the environment.		
PO6	Ethics	Understand and apply ethical principles, an responsibility for better academic, research, an placement practices.		
PO7	Communication	Communicate and discuss effectively about diverse science concepts/ innovations. Write effective reports, design documentation, and deliver presentations.		
PO8	Sustainability	Understand and analyze real-time issues and apply the knowledge/skills for sustainable development.		
PO9	Life-long learning	Identify and update the necessary scientific knowledge and skills to engage in the challenging scientific world.		
PO10	Career Progression	Develop knowledge and skills in Energy Science concepts for higher studies, competitive exam- employment and entrepreneurship.		

Programme Specific Outcomes -(PSOs)

PSO1	Understand, analyze and apply fundamental knowledge of physics, chemistry and materials science concepts in the energy sector and other related disciplines.
PSO2	Analyze, design, and develop a system, methodology, and approach regarding Energy Science.
PSO3	Understand and analyze real-world problems associated with Energy and Environment. Develop problem-solving abilities to resolve real-world problems.
PSO4	Understand the noteworthy knowledge related to energy science for research, placement and entrepreneurship.
PSO5	Understand and apply relevant knowledge, skills, principles and fundamental concepts of Energy Science and other related fields.

Eligibility for Admission

A candidate who is a B.Sc. graduate of this University or any recognized University in the main subject/subjects as given below or who has passed an examination accepted by the Syndicate as equivalent there to is eligible for admission to M.Sc. Energy Science programme.

M.Sc. in Energy Science : B.Sc., Degree in Chemistry, Physics, Applied Physics, Electronics, Nuclear Physics, Biophysics, Industrial Chemistry, Polymer Chemistry, Applied Chemistry, Biotechnology, Biochemistry and Biological Sciences (Botany, Zoology and Microbiology), B.Voc., Degree in Renewable Energy or equivalent Degree with at least 55 % of marks in Part III.

The admission is subject to the prevailing rules and regulations for PG admission of this University. The candidate has to undergo this programme in the Department of Energy Science, Alagappa University and complete all the examinations prescribed under the four semesters to qualify for this degree.

Minimum Duration of Programme

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from June/July to October/November and even semesters shall be from November/December to April/May. Each semester there shall be 90 working days consisting of 6 teaching hours per working day (5 days/week).

Components

A PG programme consists of a number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the PG programmes:

- **a.** Core Courses (CC)- "Core Papers" means "the Core Courses" related to the programme concerned including practicals and project work offered under the programme and shall cover core competency, critical thinking, analytical reasoning, and research skill.
- **b.** Discipline-Specific Electives (DSE) means the courses offered under the programme related to the major but are to be selected by the students, shall cover additional academic knowledge, critical thinking, and analytical reasoning.
- c. Non-Major Electives (NME) Exposure beyond the discipline
 - i. Students have to undergo a total of two Non-Major Elective courses with 2 credits offered by other departments (one in II Semester and another in III Semester).
 - ii. A uniform time frame of 3 hours on a common day (Tuesday) shall be allocated for the Non-Major Electives.

- iii. Non-Major Elective courses offered by the departments pertaining to a semester should be announced before the end of previous semester.
- iv. Registration process: Students have to register for the Non-Major Elective course within 15 days from the commencement of the semester either in the department or NME portal (University website).

d. Self-Learning Courses from MOOCs platforms.

- i. MOOCs shall be on voluntary for the students.
- ii. Students have to undergo a total of 2 Self Learning Courses (MOOCs) one in II semester and another in III semester.
- iii. The actual credits earned through MOOCs shall be transferred to the credit plan of programmes as extra credits. Otherwise, 2 credits/course be given if the Self Learning Course (MOOCs) is without credit.
- iv. While selecting the MOOCs, preference shall be given to the course related to employability skills.

e. Project/Dissertation (Maximum Marks: 200)

The student shall undertake the dissertation work during the fourth semester.

Project/Dissertation

The candidate shall undergo Project/Dissertation Work during the final semester. The candidate should prepare a scheme of work for the project/dissertation and should get approval from the guide. The candidate, after completing the project/dissertation, shall be allowed to submit it to the university departments at the end of the final semester. If the candidate is desirous the facility from of availing other departments/universities/laboratories/organizations they will be permitted only after getting approval from the guide and HOD. In such a case, the candidate shall acknowledge the same in their dissertation.

> No. of copies of the project/dissertation report

The candidate should prepare three copies of the project/dissertation report and submit the same for the evaluation of examiners. After evaluation, one copy will be retained in the department library, one copy will be retained by the guide and the student shall hold one copy.

> Format to be followed for project/dissertation report

The format/certificate for thesis to be followed by the student are given below

- ➤ Title page
- ➢ Certificate
- > Acknowledgment
- ➤ Content as follows:

Chapter No.	Title	Page No.
1	Introduction	
2	Aim and objectives	
3	Review of Literature	
4	Materials and Methods	
5	Results	
6	Discussion	
7	Summary and Conclusion	
8	References	

Format of the title page

Title of Project/Dissertation work

Project/Dissertation submitted in partial fulfilment of the requirement for the degree of Master of Science to the Alagappa University, Karaikudi -630003.

By

(Student Name)

(Register Number)

University Logo

Department of Energy Science

Alagappa University

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank- 216, QS BRICS Rank-104, QS India Rank-20) Karaikudi - 630003

(Year)

> Format of certificates

Certificate (Guide)

This is to certify that the **Dissertation** entitled "------" submitted to Alagappa University, Karaikudi-630 003 in partial fulfilment for the degree of Master of Science in ------ by Mr/Miss ------(Reg. No.) under my supervision. This is based on the results of studies carried out by him/her in the Department of Energy Science, Alagappa University, Karaikudi-630 003. This dissertation/Project or any part of this work has not been submitted elsewhere for any other degree, diploma, fellowship, or any other similar titles or record of any University or Institution.

Place: Karaikudi

Research Supervisor

Date:

Certificate (HOD)

This is to certify that the thesis entitled "-------" submitted by Mr/Miss ------(Reg No: ------) to the Alagappa University, in partial fulfilment for the award of the degree of Master of Science in Energy Science is a bonafide record of research work done under the supervision of Dr.-----, Assistant Professor, Department of Energy Science, Alagappa University. This is to further certify that the thesis or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi

Head of the Department

Date:

Declaration (Student)

Place: Karaikudi Date: _____

Teaching Methods

The classroom teaching would be through conventional lectures and use of Power Point presentations and smart classroom facilities. The lecture would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.

In the laboratory, Instruction would be given for the experiments followed by demonstration and finally the students have to do the experiments individually. Periodic tests would be conducted and for the students of slow learners would be given special attention.

Attendance

Students must have earned 75 % of attendance in each course for appearing for the examination. Students who have earned 74 % to 70 % of attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 69 % to 60 % of attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60 % of attendance are not eligible to appear for the End Semester Examination (ESE). They shall re-do the semester(s) after completion of the programme.

Examinations

The examinations shall be conducted separately for theory and practicals to assess (remembering, understanding, applying, analyzing, evaluating, and creating) the knowledge required during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II (CIA Test I & II).

f. Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

Theory-25 marks

Sr.No	Content	Marks
1	Average marks of two CIA test	15
2	Seminar/group discussion/quiz	5
3	Assignment/field trip report/case study report	5
	Total	25

Practical-25 Marks

1	Major Experiment	10 marks
2	Minor Experiment	5 marks
3	Spotter (2x 5/ 4 x4) or any other mode	10 marks
	Total	25 Marks

Project/Dissertation-50 Marks (assess by Guide/Incharge/HOD/Supervisor)

1	Two presentations (mid-term)	
2	Progress report	20 Marks
	Total	50 Marks

g. External Examination

- There shall be examinations at the end of each semester, for odd semesters in the month of October/November; for even semesters in April/May.
- A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October/November or April/May. However, candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester.
- A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit/regulation prescribed OR belated joining OR on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the programme.

- For the Project Report/Dissertation Work the maximum marks will be 100 marks for project report evaluation and for the Viva-Voce it is 50 marks (if in some programmes, if the project is equivalent to more than one course, the project marks would be in proportion to the number of equivalent courses).
- Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination (in defense of the Dissertation Work/Project).

h. Scheme of External Examination (Question Paper Pattern)

Section A	10 questions. All questions carry equal marks. (Objective type questions)	10 x 1 = 10 Marks	10 questions – 2 each from every unit
Section B	5 questions Either/Or type like 1.a (or) b. All questions carry equal marks.	5 x 5 = 25 Marks	5 questions – 1 each from every unit
Section C	5 questions Either/Or type like 1.a (or)b. All questions carry equal marks	$5 \ge 8 = 40$ Marks	5 question –1 each from every unit

Theory - Maximum 75 Marks

Practical - Maximum 75 Marks

Section A	Major experiment	15 Marks
Section B	Minor experiment	10 Marks
Section C	Experimental setup	5 Marks
Section D	Spotters (5 x 5 marks)	25 Marks
Section E	Record note	10 Marks
Section F	Viva-voce	10 Marks

Dissertation /Project report/Internship report Scheme of evaluation

Dissertation /Project report/Internship report	100 Marks
Viva-voce	50 Marks

Results

The results of all the examinations will be published through the Department where the student underwent the course as well as through University Website.

Passing Minimum

- A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40 % marks in the Internal Assessment and not less than 50 % in the aggregate, taking Continuous Assessment and End Semester Examinations marks together.
- The candidates not obtained 50 % in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and by submitting assignments.
- Candidates, who have secured the pass marks in the End Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (E.S.E + C.I.A), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.
- A candidate shall be declared to have passed in the Project/Dissertation/Internship if he/she gets not less than 40 % in each of the Project/Dissertation Report and Viva-Voce and not less than 50 % in the aggregate of both the marks for Project Report and Viva-Voce.
- A candidate who gets less than 50 % in the Project/Dissertation Report must resubmit the thesis. Such candidates need to take again the Viva-Voce on the resubmitted Project report.

Grading of the Courses

The following table gives the marks, Grade points, Letter Grades and classifications meant to indicate the overall academic performance of the candidate.

Conversion of Marks to Grade Points and Letter Grade (Performance in Paper / Course)

RANGE OF MARKS	GRADE POINTS	LETTER GRADE	DESCRIPTION
90 - 100	9.0 - 10.0	0	Outstanding
80 - 89	8.0 - 8.9	D+	Excellent
75 - 79	7.5 – 7.9	D	Distinction
70 - 74	7.0 – 7.4	A+	Very Good
60 - 69	6.0 - 6.9	Α	Good
50 - 59	5.0 - 5.9	В	Average
00 - 49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

- a) Successful candidates passing the examinations and earning GPA between 9.0 and 10.0 and marks from 90 – 100 shall be declared to have Outstanding (O).
- b) Successful candidates passing the examinations and earning GPA between 8.0 and 8.9 and marks from 80 - 89 shall be declared to have Excellent (D+).
- c) Successful candidates passing the examinations and earning GPA between 7.5 7.9 and marks from 75 79 shall be declared to have Distinction (D).
- d) Successful candidates passing the examinations and earning GPA between 7.0 7.4 and marks from 70 74 shall be declared to have Very Good (A+).
- e) Successful candidates passing the examinations and earning GPA between 6.0 6.9 and marks from 60 69 shall be declared to have Good (A).
- f) Successful candidates passing the examinations and earning GPA between 5.0 5.9 and marks from 50 59 shall be declared to have Average (B).
- g) Candidates earning GPA between 0.0 and marks from 00 49 shall be declared to have Re-appear (U).
- h) Absence from an examination shall not be taken as an attempt.

From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA). These two are calculated by the following formulate

GRADE POINT AVERAGE (GPA) = $\Sigma_i C_i G_i / \Sigma_i C_i$

GPA = <u>Sum of the multiplication of Grade Points by the credits of the courses</u> Sum of the credits of the courses in a Semester

Classification of the final result

ССРА	Grade	Classification of Final Result
9.5 - 10.0	O +	Einst Class Examplemy*
9.0 and above but below 9.5	0	First Class – Exemplary*
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class with Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	
6.5 and above but below 7.0	A+	First Class
6.0 and above but below 6.5	А	
5.5 and above but below 6.0	B +	Second Class
5.0 and above but below 5.5	В	Second Class
0.0 and above but below 5.0	U	Re-appear

The final result of the candidate shall be based only on the CGPA earned by the candidate.

- a) Successful candidates passing the examinations and earning CGPA between 9.5 and 10.0 shall be given Letter Grade (O+), those who earned CGPA between 9.0 and 9.4 shall be given Letter Grade (O) and declared to have First Class –Exemplary*.
- b) Successful candidates passing the examinations and earning CGPA between 7.5 and 7.9 shall be given Letter Grade (D), those who earned CGPA between 8.0 and 8.4 shall be given Letter Grade (D+), those who earned CGPA between 8.5 and 8.9 shall be given Letter Grade (D++) and declared to have First Class with Distinction*.
- c) Successful candidates passing the examinations and earning CGPA between 6.0 and 6.4 shall be given Letter Grade (A), those who earned CGPA between 6.5 and 6.9 shall be given Letter Grade (A+), those who earned CGPA between 7.0 and 7.4 shall be given Letter Grade (A++) and declared to have First Class.
- d) Successful candidates passing the examinations and earning CGPA between 5.0 and 5.4 shall be given Letter Grade (B), those who earned CGPA between 5.5 and 5.9 shall be given Letter Grade (B+) and declared to have passed in Second Class.
- i) Candidates those who earned CGPA between 0.0 and 4.9 shall be given Letter Grade
 (U) and declared to have Re-appear.
- e) Absence from an examination shall not be taken as an attempt.

CUMULATIVE GRADE POINT AVERAGE (CGPA) = $\Sigma_n \Sigma_i C_{ni}$ $G_{ni} / \Sigma_n \Sigma_i C_{ni}$

CGPA = <u>Sum of the multiplication of Grade Points by the credits of the entire Programme</u> Sum of the credits of the courses for the entire Programme

Where '**Ci**' is the Credit earned for Course i in any semester; '**Gi**' is the Grade Point obtained by the student for Course i and 'n' refers to the semester in which such courses were credited.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Note: * The candidates who have passed in the first appearance and within the prescribed Semesters of the PG Programme are alone eligible for this classification.

Maximum Duration of the Completion of the Programme

The maximum period for completion of **M.Sc.** in Energy Science shall not exceed four semesters continuing from the first semester.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/she has earned the minimum required credits for the Programme prescribed (i.e. 90 credits).

Village Extension Programme

The Sivaganga and Ramnad districts are very backward districts where a majority of people Lives in poverty. The rural mass is economically and educationally backward. Thus the aim of the introduction of this Village Extension Programme is to extend out to reach environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit any one of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three day based on the theme.1. Environmental awareness 2. Hygiene and Health. A minimum of two faculty members can accompany the students and guide them.

S. No	Course Code	Core	Course Title	T/P	Credits	Hours/ Weeks		Marks	
			I	Semest	er		Ι	E	Total
1	540101	Core	Basic Energy Sciences	Т	5	5	25	75	100
2	540102	Core	Chemistry for Energy Sciences	Т	5	5	25	75	100
3	540103	Core	Physics for Energy Sciences	Т	4	4	25	75	100
4	540104	Core	Polymer Science and Technology	Т	4	4	25	75	100
5	540107	Core	Energy Practical-I	Р	4	8	25	75	100
6		DSE	DSE*-1	Т	4	4	25	75	100
			Total		26	30	150	450	600
		1		emeste			1		1
7	540201	Core	Environmental Science	Т	5	5	25	75	100
8	540202	Core	Solar Thermal Energy	Т	5	5	25	75	100
9	540203	Core	Hydrogen Energy Systems	Т	5	5	25	75	100
10	540207	Core	Energy Practical-II	Р	4	8	25	75	100
11		DSE	DSE*2	Т	4	4	25	75	100
12		NME	Non-Major Elective **	Т	2	3	25	75	100
13			Self-learning course (SLC) – MOOCs***	S		Ext	tra credit		
		•	Total		25 +E.C	30	150	450	600
				Semest					
14	540301	Core	Photovoltaics	Т	5	5	25	75	100
15	540302	Core	Energy Storage Systems	Т	5	5	25	75	100
16	540303	Core	Advanced Instrumental Methods of Analysis	Т	5	5	25	75	100
17	540307	Core	Energy Practical-III	Р	4	8	25	75	100
18		DSE	DSE*3	Т	4	4	25	75	100
19		NME	Non-Major Elective **	Т	2	3	25	75	100
20	Self-learning course (SLC) – MOOCs***					Ext	tra credit		
			Total		25 +E.C	30	150	450	600
		I		Semest				1	
21	540999	Core	****Dissertation Work		14	30	50	150	200
			Total		14	30	50	150	200
		GRA	ND TOTAL		90 +E.C	120	500	1500	2000

M.Sc. ENERGY SCIENCE – PROGRAMME STRUCTURE

DSE – Student Choice and it may be conducted by parallel sections. ** NME – Students have to select courses offered by other (Faculty) departments. ***SLC – Voluntary basis

*** Dissertation report – Marks – Viva-voce (50) + thesis (100) + internal (50) = 200

T – Theory, P – Practical

Cours	Course Title	Credits	Hours	Marks			
e Code	Course Thie	Creatts	/Week	Ι	E	Total	
540501	Biofuels	4	4	25	75	100	
540502	Wind and Hydro Energy	4	4	25	75	100	
540503	Advanced Nanomaterials and Their Applications	4	4	25	75	100	
540504	Nuclear Energy	4	4	25	75	100	
540505	Climate Change	4	4	25	75	100	
540506	Energy Audit and Management	4	4	25	75	100	
540507	Research Methodology	4	4	25	75	100	

DISCIPLINE SPECIFIC ELECTIVES COURSES (DSE)

NON-MAJOR ELECTIVE COURSES (for Other Departments)

Cours	Course Title	Credita	Hours/	Marks			
e Code	Course Thie	Credits	Week	Ι	Е	Total	
540701	Basic Concepts in Energy Sciences	2	3	25	75	100	
540702	Renewable Energy and Energy Storage Systems	2	3	25	75	100	
540703	Energy Conversion and Conservation	2	3	25	75	100	
	Techniques	Sec.					

*Depending upon the requirement, any one of the above courses will be floated in a semester

CORE COURSES

			Semester –I						
Core	1	rse Code: 40101	Basic Energy Sciences	Т	Credits: 5	Hours: 5			
			Unit-I						
Objective 1 To study the contemporary topics in energy resources, conventional and non- conventional energy resources and energy needs.									
Energy	Resou					(18 Hrs)			
			al and Non-conventional energy resources - Di						
			gy resources - Types of conventional and Non-c						
Energy needs : Who needs what, where and how much – Overview of global/ India's energy scenario.									
Outco	me 1		ents will be able to compare the streng	h an	d limitation	is of K4			
		conventio	nal and non-conventional energy sources. Unit-II						
		To under	stand solar energy conversion, solar concentr	ators	solar photo	voltaic and			
Object	ive 2	types of s		at01 5	solai piloto	voltait anu			
Solar E	nergy					(18 Hrs)			
			, measurements and prediction - Flat plate coll			centrators -			
			ersions systems - India's solar energy potential						
			ciple of photovoltaic conversion of solar energy						
	lls – T	hin Film Sc	olar Cells - Organic Solar cells – Dye Sensitized	Solar	Cells – Pero	vskite solar			
cells.	2		· · · · · · · · · · · · · · · · · · ·			V2			
Outco	me 2	I ne stude	nts will gain working of solar cells and their a Unit-III	pplic	ations	K2			
		To bo b	nowledgeable on wind and hydro energy c	onvoi	sion wind	forms and			
Object	ive 3		ver stations in India, advantages and disadv		,				
Object	IVE 5			antag	ges of white	anu nyuro			
		energy co	nversions						
Wind a	nd Hvo	0.	nversions.			(18 Hrs)			
		dro Energy		Wind	resources –	(18 Hrs) Criteria for			
Wind E	nergy	dro Energy : Introducti				Criteria for			
Wind E selecting Develop	Energy g site forments	dro Energy Introducti for a wind to of wind far	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions ms – Location of the wind farms in India.	n – S	torage of wir	Criteria for nd energy –			
Wind E selecting Develop Hydro	Energy: g site f oments Energy	tro Energy Introduction of a wind far of wind far Hydrolog	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions ms – Location of the wind farms in India. Ty – Potential of hydropower in India – Classific	n – S	torage of wir	Criteria for nd energy –			
Wind E selecting Develop Hydro I Small hy	Energy: g site f oments Energy ydropo	tro Energy Introduction a wind to of wind far Hydrolog wer system	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions ms – Location of the wind farms in India. sy – Potential of hydropower in India – Classific s.	n – S cation	torage of wir of Hydropov	Criteria for nd energy – ver plants –			
Wind E selecting Develop Hydro	Energy: g site f oments Energy ydropo	tro Energy Introduction a wind to of wind far Hydrolog wer system	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions ms – Location of the wind farms in India. y – Potential of hydropower in India – Classific s. nts will understand hydro and wind energy co	n – S cation	torage of wir of Hydropov	Criteria for nd energy –			
Wind E selecting Develop Hydro I Small hy Outcor	Cnergy: g site f oments Energy ydropo ne 3	dro Energy Introducti for a wind far of wind far Hydrolog wer system The stude	on – Wind power – Wind energy from wind – Carm – Technologies for wind energy conversions ms – Location of the wind farms in India. y – Potential of hydropower in India – Classific s. nts will understand hydro and wind energy co Unit – IV	n – S cation	torage of wir of Hydropov sions.	Criteria for nd energy – ver plants –			
Wind E selecting Develop Hydro I Small hy Outcom	Energy: g site f oments Energy ydropo me 3 ve 4	dro Energy Introducti for a wind far of wind far Hydrolog wer system The stude	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions ms – Location of the wind farms in India. y – Potential of hydropower in India – Classific s. nts will understand hydro and wind energy co	n – S cation	torage of wir of Hydropov sions.	Criteria for nd energy – ver plants – K2			
Wind E selecting Develop Hydro I Small hy Outcoo Objecti Bioener	Cnergy: g site f pments Energy ydropo me 3 ve 4 gy	Iro Energy Introducti For a wind far of wind far Hydrolog wer system The stude To study	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. The potential of hydropower in India – Classifiens. Ints will understand hydro and wind energy conversions. Unit – IV biomass energy, biofuels like biodiesel, bioether	n – S cation onver	torage of wir of Hydropov sions. nd biogas.	Criteria for nd energy – ver plants – K2 (18 Hrs)			
Wind E selecting Develop Hydro I Small hy Outcor Objecti Bioener Introduc	cnergy: g site f pments Energy ydropo me 3 ve 4 rgy ction –	Iro Energy Introducti for a wind far of wind far Hydrolog wer system The stude To study Biomass as	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. The sy – Potential of hydropower in India – Classific s. Ints will understand hydro and wind energy conversion Unit – IV biomass energy, biofuels like biodiesel, bioether s energy resources – Origin and use of biomass	n – S cation onver anol a	torage of wir of Hydropov sions. Ind biogas. ia's bio-energ	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential			
Wind F selecting Develop Hydro I Small hy Outcor Objecti Bioener Introduc and cha	chergy: g site f pments Energy ydropo me 3 ve 4 gy ction – llenges	Iro Energy Introducti for a wind far of wind far Hydrolog wer system The stude To study Biomass as - Classifi	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. y – Potential of hydropower in India – Classifies Ints will understand hydro and wind energy converses Unit – IV biomass energy, biofuels like biodiesel, bioether s energy resources – Origin and use of biomass cation and estimation of biomass – Source and	n – S cation onver anol a – Ind I char	torage of wir of Hydropov sions. Ind biogas. ia's bio-energ acteristics of	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels –			
Wind F selecting Develop Hydro I Small hy Outcon Objecti Bioener Introduc and cha Biodiese	chergy g site f poments Energy ydropo me 3 ve 4 gy ction – llenges el – Bi	Iro Energy Introducti for a wind far of wind far Hydrolog wer system The stude To study Biomass as - Classifi	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. The sy – Potential of hydropower in India – Classific s. Ints will understand hydro and wind energy conversion Unit – IV biomass energy, biofuels like biodiesel, bioether s energy resources – Origin and use of biomass	n – S cation onver anol a – Ind I char	torage of wir of Hydropov sions. Ind biogas. ia's bio-energ acteristics of	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels –			
Wind E selecting Develop Hydro I Small hy Outcor Bioener Introduc and cha Biodiese conversi	chergy: g site f pments Energy ydropo me 3 ve 4 gy ction – llenges el – Bi ions.	Irro Energy Introducti For a wind far of wind far The stude The study Biomass as - Classifi- coethanol –	on – Wind power – Wind energy from wind – Carm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. Ints will understand hydro and wind energy conversion Unit – IV biomass energy, biofuels like biodiesel, bioether is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the	n – S cation onver anol a – Ind l char n syst	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of eems – Waste	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy			
Wind F selecting Develop Hydro I Small hy Outcon Objecti Bioener Introduc and cha Biodiese	chergy: g site f pments Energy ydropo me 3 ve 4 gy ction – llenges el – Bi ions.	Irro Energy Introducti For a wind far of wind far The stude The study Biomass as - Classifi- coethanol –	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. By – Potential of hydropower in India – Classifieds. Ints will understand hydro and wind energy conversions of the Unit – IV biomass energy, biofuels like biodiesel, bioethers energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel.	n – S cation onver anol a – Ind l char n syst	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of eems – Waste	Criteria for ad energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy			
Wind E selecting Develop Hydro I Small hy Outcon Objecti Bioener Introduc and cha Biodiese conversi Outcom	chergy: g site f pments Energy ydropo me 3 ve 4 gy ttion – Illenges el – Bi ions. me 4	 dro Energy Introducti or a wind far of wind far Hydrolog wer system The stude To study Biomass as Classific oethanol – The stuce particular 	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. y – Potential of hydropower in India – Classifiends. Ints will understand hydro and wind energy conversions of Unit – IV biomass energy, biofuels like biodiesel, bioether s energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel. Unit – V	n – S cation onver anol a – Ind l char n syst synt	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of tems – Wasto hesis of bi	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6			
Wind F selecting Develop Hydro I Small hy Outcon Objecti Bioener Introduc and cha Biodiese conversi Outcom	chergy: g site f poments Energy ydropo ne 3 ve 4 yve 4 gy stion – Illenges el – Bi ions. ne 4 ve 5	Iro Energy Introducti for a wind far of wind far Thydrolog wer system The stude To study Biomass as - Classifi- oethanol – The stuce particular	on – Wind power – Wind energy from wind – Carm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. nts will understand hydro and wind energy contents to unit – IV biomass energy, biofuels like biodiesel, bioethat is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the 'ly, biodiesel. Unit – V e more knowledge about geothermal energy a	n – S cation onver anol a – Ind l char n syst synt	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of tems – Wasto hesis of bi	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 ant.			
Wind F selecting Develop Hydro I Small hy Outcon Bioener Introduc and cha Biodiese conversi Outcom	energy g site f poments Energy ydropo ne 3 ve 4 gy ettion – Illenges el – Bi ions. ne 4 ve 5 ermal a	Introducti introducti introducti introducti introducti introducti introducti introducti intervention inte	on – Wind power – Wind energy from wind – Carm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. mts will understand hydro and wind energy content unit – IV biomass energy, biofuels like biodiesel, bioeths is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the -ly, biodiesel. Unit – V e more knowledge about geothermal energy a nergy	n – S cation onver anol a l char n syst synt nd tio	torage of wir of Hydropov sions. ind biogas. ia's bio-energ acteristics of tems – Waste hesis of bi hal power pla	Criteria for ad energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 ant. (18 Hrs)			
Wind E selecting Develop Hydro I Small hy Outcoor Objecti Bioener Introduc and cha Biodiese conversi Outcom Objecti Geothe Geother	chergy: g site f pments Energy ydropoo me 3 ve 4 gy ction – llenges el – Bi ions. he 4 ve 5 rmal a rmal E	Iro Energy Introducti For a wind far of wind far T Hydrolog wer system The stude To study Biomass as - Classifi- coethanol – The stuce particular To acquir and Tidal e nergy: Intr	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. Ints will understand hydro and wind energy conversion unit – IV biomass energy, biofuels like biodiesel, bioeths is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel. Unit – V e more knowledge about geothermal energy a nergy oduction – Geothermal resources – Geothermal	n – S cation onver anol a – Ind l char n syst synt nd tio energ	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of cems – Waste hesis of bio lal power pla	Criteria for ad energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 ant. (18 Hrs) Advantages			
Wind F selecting Develop Hydro I Small hy Outcoor Bioener Introduc and cha Biodiese conversi Outcoor Outcoor Geother and disa	chergy: g site f pments Energy ydropoo me 3 ve 4 gy ction – llenges el – Bi ions. he 4 ve 5 rmal a rmal E dvanta	dro Energy Introducti or a wind far or a wind far or Hydrolog wer system The stude To study Biomass as a - Classification Biomass as a - Classification biomass as a - Classification The stude Diamass as a - Classification a - Classification biomass as	on – Wind power – Wind energy from wind – farm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. Ints will understand hydro and wind energy conversion unit – IV biomass energy, biofuels like biodiesel, bioether is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel. Unit – V e more knowledge about geothermal energy a nergy oduction – Geothermal resources – Geothermal nermal energy over other energy forms – Applica	n – S cation onver anol a – Ind l char n syst synt nd tio energations	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of tems – Waste hesis of bio- hesis of bio- lal power pla cy in India – a of geotherma	Criteria for ad energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 Advantages l energy.			
Wind F selecting Develop Hydro I Small hy Outcor Objecti Bioener Introduc and cha Biodiese conversi Outcor Outcor Objecti Geother and disa Tidal er	chergy: g site f pments Energy ydropo me 3 ve 4 gy ttion – llenges el – Bi ions. me 4 ve 5 rmal a rmal E dvanta nergy:	dro Energy Introducti or a wind far or a wind far or Hydrolog wer system The stude To study Biomass as a - Classification Biomass as a - Classification biomass as a - Classification The stude Diamass as a - Classification a - Classification biomass as	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. Ints will understand hydro and wind energy conversion unit – IV biomass energy, biofuels like biodiesel, bioeths is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel. Unit – V e more knowledge about geothermal energy a nergy oduction – Geothermal resources – Geothermal	n – S cation onver anol a – Ind l char n syst synt nd tio energations	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of tems – Waste hesis of bio- hesis of bio- lal power pla cy in India – a of geotherma	Criteria for ad energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 Advantages l energy.			
Wind F selecting Develop Hydro I Small hy Outcoor Bioener Introduc and cha Biodiese conversi Outcoor Outcoor Geother and disa	chergy: g site f pments Energy ydropo me 3 ve 4 gy ttion – llenges el – Bi ions. me 4 ve 5 rmal a rmal E dvanta nergy:	dro Energy Introducti or a wind far of wind far i Hydrolog wer system The stude To study Biomass as - Classifitioethanol – The stud particular To acquir and Tidal e nergy: Intri ges of geoth Introductio	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversions – Location of the wind farms in India. By – Potential of hydropower in India – Classifieds. Ints will understand hydro and wind energy conversions to the unit – IV biomass energy, biofuels like biodiesel, bioethers energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel. Unit – V e more knowledge about geothermal energy a nergy oduction – Geothermal resources – Geothermal hermal energy over other energy forms – Applica n - Main types – Tidal power plant – Advantages	n – S cation onver anol a – Ind l char n syst synt nd tio energe ations and l	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of terms – Waster hesis of bio- hesis of bio- dal power pla at power pla at power pla at power pla	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 ant. (18 Hrs) Advantages il energy. tidal power			
Wind F selecting Develop Hydro I Small hy Outcor Objecti Bioener Introduc and cha Biodiese conversi Outcor Outcor Objecti Geother and disa Tidal er	chergy: g site f pments Energy ydropo ne 3 ve 4 gy ttion – Illenges el – Bi ions. he 4 ve 5 srmal a rmal E dvanta hergy: on.	dro Energy Introducti or a wind far or a wind far or a wind far or Hydrolog wer system The stude To study Biomass as a - Classification of a classificati	on – Wind power – Wind energy from wind – Farm – Technologies for wind energy conversion ms – Location of the wind farms in India. ty – Potential of hydropower in India – Classifie s. Ints will understand hydro and wind energy conversion unit – IV biomass energy, biofuels like biodiesel, bioether is energy resources – Origin and use of biomass cation and estimation of biomass – Source and Biogas – Types of biomass energy conversion lents will apply this knowledge to the ty, biodiesel. Unit – V e more knowledge about geothermal energy a nergy oduction – Geothermal resources – Geothermal nermal energy over other energy forms – Applica	n – S cation onver anol a – Ind l char n syst synt nd tio energe ations and l	torage of wir of Hydropov sions. and biogas. ia's bio-energ acteristics of terms – Waster hesis of bio- hesis of bio- dal power pla at power pla at power pla at power pla	Criteria for nd energy – ver plants – K2 (18 Hrs) gy potential Biofuels – e to energy ofuel K6 ant. (18 Hrs) Advantages il energy. tidal power			

David A. Rivkin & Laurel Silk. (2013). Wind Energy. Jones & Bartlett Learning.

Sawhney, G. S. (2012). Non-Conventional Energy resources. PHI Learning Private Limited.

Tiwari, G.N. (2016) Solar Energy Fundamentals, Design, Modelling and Applications. Narosa Publishing House.

Sunggyu, L and Shah, Y.T. (2013). Biofuels and Bioenergy Processes and Technologies. CRC press.

- Khan, B. H. (2017). *Non-Conventional Energy Resources (3rd edition)* McGraw-Hill Education (India) Private Limited.
- Tiwari, G.N. (2015). Greenhouse Technology for Controlled Environment. Narosa Publishing House.
- Math, M.C. (2019). Non-Conventional Energy Sources. Yes Dee.
- Reinders, A., Verlinden, P., Van Sark, W and Freundlich, A. (2017). *Photovoltaics Solar Energy from Fundamentals to Applications*. Wiley.
- Solanki, C.S. (2015). Solar photovoltaic technology and systems: A manual for technicians, trainers and engineers. PHI Learning Pvt. Ltd.

Online resources:

https://www.britannica.com/science/energy

Energy Science - Google Books- principle, technologies and impact

Renewable-Energy-Driven Future Technologies, Modelling, Applications, Sustainability and Policies - https://www.google.co.in/books/edition/Renewable_Energy_Driven_Future

https://www.google.co.in/books/edition/An_Introduction_to_Renewable_Energy_Soure								
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
	100	Nar	ne of the Course To	eacher: Dr. S. Ka	ruppuchamy			

Course Outcome (CO) Vs Programme Outcomes (PO)

CO	РО											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	3	1	2		1	1/2	1	1	2	2		
CO2	3	2	2	3	2	1	2	1	2	3		
CO3	2	2	3	C.C.	1	/ - /	2	2	1	2		
CO4	2	2	2	3 -	2	1	2	1	2	2		
CO5	2	1	1	1	1	1	2	2	1	2		
W.Avg.	2.4	1.6	2.0	1.4	1.4	0.6	1.8	1.4	1.6	2.2		

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO	PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	2	1	2	2	2				
CO2	3	2	2	2	2				
CO3	2	1	2	2	1				
CO4	2	2	1	1	1				
CO5	1	-	1	2	1				
W.Av.	2	1.2	1.6	1.8	1.4				

S –Strong (3), M-Medium (2), L- Low (1)

		Semester –I				
Core Course 5401		Chemistry for Energy Sciences	Т	Credits: 5	Hou	rs: 5
		Unit-I				
Objective 1	To un	derstand the structure and bonding, the basic c	once	ot of acids an	d bas	es.
	ling & (Concept of Acids and Bases			(18 H	(rs)
		onic radii – Ionization potential – Electron affinity	– Ele	ctronegativity		/
		cular orbitals and electronic configuration of ho				
		apes of polyatomic molecules. Bond order and ma				
bonds - Intermol	lecular f	orces – Dipole moment – Lattice energy – Bronste	ed an	d Lewis conce	ept of	acids
and bases - Hard	and So	ft acids and bases.				
Outcome 1		students will demonstrate potentiometric	and	conductom	etric	K3
Outcome 1	titrati					IX.5
		Unit-II				
Objective 2	1	knowledgeable on the fundamental concept of Standard potential, Nernst equation and Farada		•	, Typ	oes of
Electrochemistr	•				(18 I	
Introduction – F	undame	ntal concepts - Electrochemical reaction - Redo	x rea	ction – Balar	ncing	redox
reaction - Types	of Cells	s - Common Components - Electrolytic cells and V	Volta	ic (Galvanic)	cells -	- Cell
potential - Stand	ard pote	entials – Standard Reduction Potentials – E ⁰ cell ar	nd ΔC	3 ⁰ – Calculatin	ng E ⁰	cell –
Nernst equation	- Conce	entration cells - Batteries - Fuel cells - Electrolys	sis –	Stoichiometry	v – Fa	raday
constant.						
	The s	tudents will apply electrochemistry concepts	to (drive the Ne	ernst	
Outcome 2		ion and Faraday law for various systems.				K3
		Unit-III				
Objective 3		idy chemical thermodynamics, Ideal gas, Ther ple, Gibbs and Helmholtz energies, Le-Chatelie			s, Car	mot's
Thermodynami		F ,	- P	F	(18 I	Irs)
		nics: Thermodynamic properties – Boyle's I	Laws	– Ideal ga		
		versible and Irreversible P-V works – First law				
Thomson experim	ments –	Second law of thermodynamics – Carnot's prin	ciple	- Gibbs and	Helm	holtz
energies - Maxw	ell relat	ions – Le-Chatelier principle.				
Outcome 3	The st	udents will be able to understand the properties	s of s	olids, gas, liq	uids	K2
		Unit – IV				
Objective 4		quire theories of reaction rate, reaction order	, Arı	rhenius para	meter	· and
	-	oort properties.				
Chemical Kinet			-		(18]	
		tes: Rate laws and rate constants – Reaction order				
		quilibrium – Temperature dependence of reaction			paran	neters
		y reactions – Steady-state approximation – Kinetic		-	ЪT	
		ffusion – Thermal conductivity – Viscosity – Effus			y - N	ernst-
*		es-Einstein equation – Complex reactions – Chain				W2
Outcome 4	The st	udents will apply the collision theory to various	conc	litions.		K3
	T .	Unit – V		4		
Objective 5		quire more information about Photochemical la y level diagram and Forbidden transitions.	aws,	the Jablonsk	i diag	gram,
Photochemistry					(18 F	
		nical laws – Quantum yield – Electronically excit				
		es - Energy level diagrams - Assignment of n-				
	sitions	– Fluorescence and Phosphorescence -	- P	hotoluminesc	ence	and
Chemiluminesce	1					
Outcome 5		students will be able to analyze photochen am, and the energy level diagram.	nical	laws, Jablo	onski	K4

Atkins, P. (2016). Physical Chemistry. Oxford.

Carpenter, N. E. (2014). Chemistry of sustainable energy. CRC.

Darrell D. Ebbing. (2009). Fundamentals of chemistry. Cengage.

Das, A. K. (2016). Fundamental concepts of inorganic chemistry. CBS.

Douglas A. Skoog. (2011). Fundamental of analytical chemistry. Cengage.

Glasstone, S. (2016). An Introduction to Electrochemistry. EMP.

John Kenkel. (2015). Basic Chemistry Concepts and Exercises, CRC.

Lee, J.D. (2016). Concise Inorganic Chemistry. Wiley.

Online resources:

Electrochemistry, The Basics, With Examples: Electrochemistry: The Basics, With Examples | SpringerLink.

Books on Fundamental Electrochemistry and Electroanalytical Techniques: Books on Fundamental Electrochemistry and Electroanalytical Techniques | SpringerLink.

https://assets.cambridge.org/97805218/50421/frontmatter/ -Thermodynamics: Thermodynamics | SpringerLink

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
		Nar	ne of the Course T	Ceacher: Dr. C. Ka	rthikeyan

Course Outcome (CO) Vs Programme Outcomes (PO)

СО	SALAGAPPA UNIVIPO TY									
CO	PO1 PO2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	1	1	2	2	1	2	2	3	2
CO2	2	2	2	2	2	N.e.	2	1	2	2
CO3	2	2	2	1	2		2	2	2	1
CO4	2	2	1	1	1		2	1	1	1
CO5	2	2	2	2	2	112	2	1	3	2
W.Avg.	2.2	1.8	1.6	1.6	1.8	0.2	2.0	1.4	2.2	1.6

S-Strong (3), M-Medium (2), L- Low ((1)	
--------------------------------------	-----	--

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO							
0	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	2	3	1	2	2			
CO2	3	2	2	2	2			
CO3	1	2	1	2	1			
CO4	2	2	1	1	1			
CO5	2	2	2	2	1			
W.Avg.	2	2.2	1.4	1.8	1.4			

S-Strong	(3).	M-Medium	(2). L-I	Low (1)
5 Strong	(0)	I'll liteuluin	(=), = =	

			Semester –I						
Core		se Code:	Physics for Energy Sciences	Т	Credits: 4	Hours : 4			
	54	0103		-					
		To und	Unit – I		aonconvotiv	va and non			
Objec	tive 1		erstand work, kinetic energy, potential en ative forces.	nergy,	conservativ	e and non-			
Kineti	c and P	otential E				(14 Hrs)			
			y: Work done by a constant force – Work do	ne by		· /			
			netic energy theorem, Potential Energy: Cons						
			etween Conservative forces and Potential ene						
Equilit	orium of	a system	Mass-Energy equivalence, Quantization of e	energy					
Outco	me 1		dents gain more knowledge about work			and K2			
potential energy, conservative and non-conservative forces.									
Unit – II									
Objective 2 To study the Zeroth, First and Second law of thermodynamics, work and heat in thermodynamic processes and energy transfer mechanisms.									
Therm	ıodynaı		iynamic processes and energy transfer meen	amsm	15.	(15 Hrs)			
	•		meters and Celsius temperature scale – Constan	nt volu	me gas Ther	· · · · ·			
			e scale – Thermal expansion of solids and Li						
			of an ideal gas – Zeroth, First and Second law						
	Internal Energy – Heat capacity and Specific heat – Latent heat – Work and Heat in thermodynamic processes – First law of thermodynamics – Some applications of the First law of thermodynamics –								
Energy transfer mechanisms – Heat engines and second law of thermodynamics.									
Outco		The stu	lents will be able to understand the variou	s imp	ortant conce	ept in K2			
Outer	Jine 2	thermod	ynamics.			K2			
Objec	tive 3		ire more information about AC and DC c	ircuits	s; Kirchhoff	's rules, RC			
circuits, rectifiers and filters.									
			Electrometive force . Resistors in series and	in nor	allal Virabl	(15 Hrs)			
			Electromotive force – Resistors in series and	-					
			al instruments – Household wiring and Ele		-				
	-	-	ure variation of resistance – Alternating cu						
			1 AC circuit – Inductors in an AC circuit – Cap						
			an AC circuit – Resonance in a series RLC c	ircuit	– Transform	er and Power			
			and Filters.						
Outco	ome 3	The stuc	lents will be to develop logic gates.			K6			
			Unit – IV						
Objec			v about band theory of solids and the free-ele	ectron	theory of m				
		l Solida	Supervellinge Flootness subits Mal	hords	Engrand	(14 Hrs)			
			Spectral lines – Electron orbits – Molecular solids – Band theory of solids – Free-Electro						
			sulators and Semiconductors – Semiconductor						
			'heory – Josephson's effect.		les – Supere	onductivity –			
Outco			lents will know about free-electron theory of	f meta	ls.	K2			
0 4000		110 5000	$\frac{1}{1} \frac{1}{1} \frac{1}$			112			
Objec	tive 5	To know	more information about structure and pro	pertie	s of nuclear	structure			
	ar Struc					(14 Hrs)			
Nuclea	ar Struct	ure: Prop	erties of Nuclei-Binding energy and Nuclear fo	orces -	- Reduced ma				
			iquid drop model - Radioactivity - Decay pro						
		ons – Nuc	lear fission and Nuclear fusion - Nuclear read	ctor –	Breeder reac	tor – Uses of			
radiatio	on.								
Outco	ome 5	The stuc	lents will acquire more information about n	uclear	structure.	K2			

Serway, R. A., & Jewett, J. W. (2009). *Physics for Scientists and Engineers*: pt. 1. Mechanics. Cengage Learning, UK.

Pandya, M.L & Yadav, R.P.S. (2015). Elements of Nuclear Physics. Kedar Nath Ram Nath.

Chandra, S. (2016). *Energy, Entropy and Engines: An Introduction to Thermodynamics*. John Wiley & Sons.

Serway, R. A & Vuille, C. (2016). College Physics, Volume 1 (Vol. 1). Cengage Learning

Weinberg, S. (2021). Foundations of modern physics. Cambridge University Press.

Chandra, S. (2010). Physics of Atoms and Molecules. Narosa Publication.

Michael Shur. (2010). Physics of Semiconductor Devices. PHI Learning.

Online resources:

Kinetic and Potential Energy: Understanding Changes Within Physical Systems- Kinetic and Potential Energy - Google Books

DC/AC Circuitshttps://www.google.co.in/books/edition/Fundamentals_of_Electronics

https://www.cambridge.org/highereducation/books/the-physics-of

energy/7FE67626190E6D164A71B0D61E061E63#overview									
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
			Name of th	e Course Teacher	r: Dr. S. Natarajan				

Course Outcome (CO) Vs Programme Outcomes (PO)

СО			19	~	Р	0				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	1	2	1	2	-	2	2	2	1
CO2	2	1	1	1-5	1	-	2	1	2	2
CO3	2	3	2	2	3	1	2	1	2	2
CO4	1	1	1	3	1	12	1	1	1	2
CO5	1	1	1	CA.	1		2	1	2	2
W.Avg.	1.8	1.4	1.4	1.2	1.6	0.2	1.8	1.2	1.8	1.8

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	2	2	2	1	2				
CO2	1	1	2	1	1				
CO3	2	2	2	2	2				
CO4	1	1	1	1	1				
CO5	1	1	1	1	1				
W.Avg.	1.4	1.4	1.6	1.2	1.4				

S –Strong (3), M-Medium (2), L- Low (1)

			Semester I			
Core	Co	urse Code: 540104	Polymer Science and Technology	Т	Credits: 4	Hours: 4
		1	Unit – I		·	
Object	tive 1		stand the basic concept of polymers, polymerization reactions.	poly	merization, m	echanism and
Basic C	Concep		X V			(14 Hrs)
Definiti	on - l	Nomenclature	e of polymers - Functionality of monon	ners –	- Degree of po	olymerization –
Types o	of poly	merization: A	Addition – Condensation –Copolymeriz	ation	 Mechanism 	of free radical,
cationic	and a	nionic polym	erization - Polymer kinetics - Polymeriz	zation	techniques.	
Outco	me 1		nts will gain more information about polymerization and the kinetics of polymerization and the kinetics of pol			es and K2
			Unit II			
Object	tive 2		more information about polymer , polymer processing and fabrication t			structure and
Materia	al and	Processing				(14 Hrs)
		0	c materials – Polymer structure and	Prope	rties – Polym	(/
			r compounding and Fabrication – Fabric			-
0-4		The stude	nts will be able to know about polyme	ric co	mponents, str	ucture K2
Outco	me 2	and prope	rties, polymer processing and fabricat	ion te	chniques.	K2
			Unit III			•
Object	tive 3	To acquir determina	re more information about polymention.	test	ing and mol	ecular weight
Charac	teriza	tion of Polyn	ners	10		(15 Hrs)
			point - Softening point - Thermal con	ductiv	vity – Shrinka	
index te	est – Pa	article size – l	Density and bulk factor – Water and Mo	isture	absorption.	-
			Density and <mark>bulk factor – Water and Mo</mark> ation – Number average – Weight avera			
Molecul	lar we	ight determin		ge – V	Viscosity avera	ge – Molecular
Molecul	lar we of poly	ight determin ymers – Mole	ation – Number average – Weight avera	ge – V	Viscosity avera	ge – Molecular
Molecul weight	lar we of poly	ight determin ymers – Mole hods.	ation – Number average – Weight avera	ge – V atterii	Viscosity averang – Osmotic,	ge – Molecular Centrifuge and
Molecul weight	lar we of poly ty met	ight determin ymers – Mole hods. The stude	ation – Number average – Weight avera ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to	ge – V atterin t the o	Viscosity avera ng – Osmotic, characterizati	ge – Molecular Centrifuge and on and
Molecul weight Viscosit	lar we of poly ty met	ight determin ymers – Mole hods. The studer testing of	ation – Number average – Weight avera ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to	ge – V atterin t the o	Viscosity avera ng – Osmotic, characterizati	ge – Molecular Centrifuge and on and
Molecul weight Viscosit	lar we of poly ty met me 3	ight determin ymers – Mole hods. The studen testing of weight of To under	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg	ge – V atterin t the o deter	Viscosity avera ng – Osmotic, characterizati	ge – Molecular Centrifuge and on and lecular K3
Molecul weight of Viscosit Outco Object	lar we of poly ty met me 3 tive 4	ight determin ymers – Mole hods. The studen testing of weight of p To under polymers a	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV	ge – V atterin t the o deter	Viscosity avera ng – Osmotic, characterizati mine the mo	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic
Molecul weight of Viscosit Outcol Object Polyme	lar we of poly ty met me 3 tive 4	ight determin ymers – Mole hods. The studen testing of weight of To unden polymers a aterials	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers.	ge – N atterin t the o deter radat	Viscosity avera ng – Osmotic, characterizati mine the mo	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs)
Molecul weight of Viscosid Outcol Object Polyme Frontier	lar we of poly ty met me 3 tive 4 eric ma	ight determin ymers – Mole hods. The studer testing of weight of Dolymers a aterials polymer mat	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. <u>Unit – IV</u> rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Bi	ge – N atterin t the o deter radat	Viscosity avera ng – Osmotic, characterizati mine the mo ole, conducti ical polymers	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs)
Molecul weight of Viscosit Outco Object Polyme Frontier	lar we of poly ty met me 3 tive 4 eric ma	ight determin ymers – Mole hods. The studen testing of weight of bolymers a terials polymer mat agnetic polym	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Bi ners – Polymers for space – Nonlinear optical polymers	ge – N atterin t the o deter radat	Viscosity avera ng – Osmotic, characterizati mine the mo ole, conducti ical polymers polymers.	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting
Molecul weight of Viscosit Outcol Object Polyme Frontier	lar we of poly ty met me 3 tive 4 eric ma rs of p rs – M	ight determin ymers – Mole hods. The studen testing of weight of polymers a aterials polymer mat agnetic polym The stude materials,	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Biners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting	ge – V atterin t the deter radat omed otical orma	Viscosity avera ng – Osmotic, characterizati mine the mo ole, conducti ical polymers polymers. tion about p	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer
Molecul weight of Viscosid Outcol Object Polyme Frontier polymer	lar we of poly ty met me 3 tive 4 eric ma rs of p rs – M	ight determin ymers – Mole hods. The studen testing of weight of Dolymers a aterials polymer mat agnetic polym	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Biners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting	ge – V atterin t the deter radat omed otical orma	Viscosity avera ng – Osmotic, characterizati mine the mo ole, conducti ical polymers polymers. tion about p	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer
Molecul weight of Viscosit Outcol Object Polyme Frontier polymen Outcol	lar we of poly ty met me 3 tive 4 eric ma rs of y rs – M me 4	ight determin ymers – Mole hods. The studer testing of weight of Dolymers a aterials polymer mat agnetic polym The stude materials, optical pol	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Biners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V	ge – V atterin t the o deter radat omed otical orma poly	Viscosity avera ng – Osmotic, characterizati mine the mo ole, conducti ical polymers polymers. tion about p mers and no	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2
Molecul weight of Viscosit Outcom Object Polyme Frontier polyme	lar we of poly ty met me 3 tive 4 eric ma rs of y rs – M me 4	ight determin ymers – Mole hods. The studen testing of weight of polymers a aterials polymer mat agnetic polym The stude materials, optical pol	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Bi ners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V y various applications of polymers in e	ge – V atterin t the o deter radat omed otical orma poly energy	Viscosity avera ng – Osmotic, characterization mine the mo ole, conduction ical polymers polymers. tion about polymers mers and no	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2
Molecul weight of Viscosit Outco Object Polyme Frontier polymer Outco Object	lar we of poly ty met me 3 tive 4 eric ma rs of j rs – M me 4 tive 5	ight determin ymers – Mole hods. The studen testing of weight of To under polymers a aterials polymer mat agnetic polym The stude materials, optical pol	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Biners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V	ge – V atterin t the o deter radat omed otical orma poly energy	Viscosity avera ng – Osmotic, characterization mine the mo ole, conduction ical polymers polymers. tion about polymers mers and no	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2 trical, sensors,
Molecul weight of Viscosif Outcol Object Polyme Frontier polymer Outcol Object Applica	lar we of poly ty met me 3 tive 4 eric ma rs of j rs – M me 4 tive 5 ation of	ight determin ymers – Mole hods. The studen testing of weight of To under polymers a aterials polymer mat agnetic polym The stude materials, optical pol To identify thermoxid f polymers	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Bi ners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V y various applications of polymers in e	ge – V atterin t the o deter radat omed otical orma poly mergy	Viscosity avera ng – Osmotic, characterizati mine the mo ole, conducti ical polymers polymers. tion about p mers and no y, optical, elec posal.	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2 trical, sensors, (14 Hrs)
Molecul weight of Viscosit Outcol Object Polyme Frontier polymer Outcol Object Applica	lar we of poly ty met me 3 tive 4 eric ma rs – M me 4 tive 5 ation o	ight determin ymers – Mole hods. The studen testing of weight of polymers a aterials polymer mat agnetic polym The stude materials, optical pol thermoxid of polymers -	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. Biodegradable polymers – Bioners – Polymers for space – Nonlinear optical piodegradable polymers, conducting biodegradable polymers, conducting lymers. Unit – V y various applications of polymers in elative degradation, toxicity, and effluer – Energy, Optical, Electrical, Sensors,	ge – V atterin t the o deter radat orma orma poly energy nt dis Cosn	Viscosity averang – Osmotic, characterization mine the mo ole, conduction ical polymers polymers. tion about polymers mers and no y, optical, elector posal.	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2 trical, sensors, (14 Hrs) elivery, Tissue
Molecul weight of Viscosid Outcol Object Polyme Frontier polymer Outcol Object Applica enginee	lar we of poly ty met me 3 tive 4 ric ma rs of p rs – M me 4 tive 5 ation o ring an	ight determin ymers – Mole hods. The studer testing of weight of polymers a aterials polymer mat agnetic polym The stude materials, optical pol thermoxid of polymers f polymers - nd Water trea	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers. erials – Biodegradable polymers – Biners – Polymers for space – Nonlinear optical polymers. ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V y various applications of polymers in et lative degradation, toxicity, and effluen – Energy, Optical, Electrical, Sensors, atment – Problems of polymer –Thermos	ge – V atterin t the o deter radat orma orma poly energy nt dis Cosn	Viscosity averang – Osmotic, characterization mine the mo ole, conduction ical polymers polymers. tion about polymers mers and no y, optical, elector posal.	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2 trical, sensors, (14 Hrs) elivery, Tissue
Molecul weight of Viscosit Outcom Object Polyme Frontier polymer Outcom Object Applica enginee	lar we of poly ty met me 3 tive 4 ric ma rs of p rs – M me 4 tive 5 ation o ring an	ight determin ymers – Mole hods. The studer testing of weight of Dolymers a aterials polymer mat agnetic polym The stude materials, optical pol f polymers f polymers - nd Water trea affluent dispo	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers – Bi ners – Polymers for space – Nonlinear op ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V y various applications of polymers in e lative degradation, toxicity, and effluen – Energy, Optical, Electrical, Sensors, atment – Problems of polymer –Thermoz sal – Feedstock scarcity.	ge – V atterin t the o deter radat radat orma orma poly nergy nt dis	Viscosity averang – Osmotic, characterization mine the mo ole, conduction ical polymers polymers. tion about point mers and no y, optical, elector posal. hetics, Drug dive degradation	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2 trical, sensors, (14 Hrs) elivery, Tissue – Fire hazards
Molecul weight of Viscosit Outcom Object Polyme Frontier polymer Outcom Object Applica enginee	lar we of poly ty met me 3 tive 4 ric ma rs of p rs – M me 4 tive 5 ation o ring an ity – E	ight determin ymers – Mole hods. The studen testing of weight of polymers a aterials polymer mat agnetic polym The stude materials, optical pol f polymers f polymers f polymers f polymers f polymers f polymers f polymers f polymers f polymers	ation – Number average – Weight average ecular weight determination by Light sc nts will acquire more knowledge about polymers. Apply this knowledge to polymers. Unit – IV rstand polymer materials, biodeg and non-linear optical polymers. erials – Biodegradable polymers. erials – Biodegradable polymers – Biners – Polymers for space – Nonlinear optical polymers. ents will be able to attain more inf biodegradable polymers, conducting lymers. Unit – V y various applications of polymers in et lative degradation, toxicity, and effluen – Energy, Optical, Electrical, Sensors, atment – Problems of polymer –Thermos	ge – V atterin t the o deter radat radat orma orma poly nergy nt dis	Viscosity averang – Osmotic, characterization mine the mo ole, conduction ical polymers polymers. tion about point mers and no y, optical, elector posal. hetics, Drug dive degradation	ge – Molecular Centrifuge and on and lecular K3 ng, magnetic (15 Hrs) – Conducting olymer nlinear K2 trical, sensors, (14 Hrs) elivery, Tissue – Fire hazards

Charles E. Carraher. (2005). Polymer chemistry. Marcel Dekker.

Ferry, M.H. (2004). Handbook of polymer science and technology, Volume. 2: Polymer, rheology, properties, applications, testing and recycling of polymers. CBS.

Jain, Jain. M. (2016). Engineering Chemistry. Dhanpat Rai.

Misra, G.S. (2010). Introductory polymer chemistry. New Age international.

Mohan kumar, H. (2017). Advanced polymer chemistry. Centrum Press.

Robert O. Ebewele. (2000). Polymer Science and Technology. CRC Press.

Online resources:

Textbook of Polymer Science, 3rd Edition | Wiley- https://www.wiley.com/enin/Textbook+of+Polymer+Science

https://www.google.co.in/books/edition/Basics of Polymer Chemistry

https://chemistry.pixel-online.org/

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
	Name of the Course Teacher: Dr. A. Nithva							

Course Outcome (CO) Vs Programme Outcomes (PO)

60			1442	U Mor	P	0				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	1	UNIVER	SITY	2	-	-	3
CO2	3	2	2	1	1	1	2	2	2	2
CO3	2	2	1	3	2	1	2	2	2	2
CO4	2	2	2	1/-	1	-	2	2	2	2
CO5	2	2	2	1	1		2	2	2	2
W.Avg.	2.2	2.0	1.8	1.2	1.0	0.4	2.0	1.6	1.6	2.2

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	100	PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	-	1	1					
CO2	2	1	2	1	2					
CO3	2	2	2	2	2					
CO4	2	2	1	1	2					
CO5	2	1	2	2	2					
W.Avg.	2.2	1.6	1.4	1.4	1.8					

S-Strong (3), M-Medium (2), L- Low (1)

			Semester-	I			
Core		rse Code : 540107	Energy Practical- I	Р	Credit: 4	Hours	: 8
			nductometric and Potent				
Object	tive 1		e the strength of unkno tric methods.	wn matei	ials through co	onductometr	ric and
 Cone Pote 	ductom ntiomet	etric titrations	: Acid-Alkali titration. : Determination of dissoci Acid-Alkali titration. Redox titration.	ation cons	stants of weak ac	ids.	
Outco	me 1		its will learn to analyz cid-alkali reactions.	e conduc	tance and EM	F changes	K4
			Digital Circu	iits			
Object	ive 2	To understa	and the digital behavior o	of the cor	responding circ	uits.	
6. Anal	log to d	nalog (D/A) co igital (A/D) c using Integra		ork (b) We	ighted resistor n	nethod	
Outco	me 2	The studer correspond	nts will be able to and ing circuits	alyze the	digital behav	ior of the	K4
			Synthesis of Nano	materials	3		
Object	ive 3	To prepare	nanomaterials through o	hemical 1	methods.		
			nanoparticles by chemical d materials through the che		thod		
Outcom	e 3	The studen methods.	ts will fabricate nanos	tructured	l materials via	a chemical	K6
			Polymer So	cience			
Objectiv	ve 4	To <mark>find</mark> ou	t the m <mark>olecular wei</mark> ght of	given po	ly <mark>mer so</mark> lutions.	•	
10. To	measur	e the molecula	ar weight <mark>of th</mark> e polymer se	olution	57		
Outcom	e 4	The studen	ts will determine the mo	lecular w	eight of polyme	r solutions.	K4
		1	Thin films Mea	surement	t		
Objectiv	ve 5	To measur	e the resistance of thin fi	lms.			
11. Res	sistivity		s of thin films.				1
Outcom	e 5	The studen	ts will evaluate the resist	ance of tl	nin films.		K5
					*Any other equi	valent exper	iments.
A	ppucha gencies	my. (2015). s.	Nanoscience and techno Energy Science, Labora		-		

Online Resour	Online Resources:											
https://vlab.amrita.edu/?sub=3&brch=193∼=352&cnt=1 - Acid Base Titration (Theory) :												
Inorganic Chemistry Virtual Lab : Biotechnology and Biomedical Engineering : Amrita												
Vishwa	Vishwa Vidyapeetham Virtual Lab											
	/documents/175260/		epm lab 1.pd	f								
10 1												
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create							
Name of the Co	Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. C. Karthikeyan,											
Dr. A. Nithya,	Dr. S. Natarajan			-								

СО					P	0				
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	1	2	2	2	2
CO2	1	1	1	2	1	1	1	1	1	1
CO3	3	3	3	1	2	1	3	3	3	2
CO4	2	2	3	2	1	1	2	2	2	1
CO5	3	2	1	1	1.00	1	3	3	2	1
W.Avg.	2.4	2.0	2.2	1.6	1.4	1.0	2.2	2.2	2.0	1.4

Course Outcome (CO) Vs Programme Outcomes (PO)

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO								
CO	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	2	2	2				
CO2	2	1	1	1	1				
CO3	3	2	2	2	2				
CO4	1	1	1	1	2				
CO5	2	2	2	2	2				
W.Avg.	2.2	1.6	1.6	1.6	1.8				

S –Strong (3), M-Medium (2), L- Low (1)

			Semester –II				
Core	Course 540		Environmental Science	Т	Credits: 5	Hou	rs: 5
	540	201	Unit-I				
Obje	ctive 1		dy the environmental pollution, effec	ts and o	controlling	metho	ds of
0			pollutions.			(10	II)
	nmental		Effects and Control methods of Air po	Ilution	Water nelly		Hrs)
			– Marine pollution – Thermal pollution a		-	uion –	5011
ponuno		C	dents will understand the values of the				
Outc	ome 1		ses, effects and remedial measures of en				K4
		the caus	Unit-II	VII UIIIIE	ittai ponutioi	1.	
		To kno	ow about water analysis, water qu	ality sta	ndards wa	ter a	ality
Obje	ctive 2		eters and water treatment methods.	anty sta	nuarus, wa	ur q	uanty
Water	Analysis	parame	ters and water treatment methods.			(18	Hrs)
		tandard: V	Water quality parameters – Colour – Od	our – Te	mperature –		
			H – Conductivity – Cations - Anions - S				
			leavy metals and coliform – Potable water				
			Primary methods – Aeration – Filtration				
			on – Disinfection. Secondary methods – A				
			Lagoons and Ponds. Tertiary/Advanced				
			nge – Electrodialysis – Reverse osmosis.				
	ome 2		dents will understand the necessity of w	ater trea	tment metho	ods.	K2
			Unit-III	1			
Obje	ctive 3		uire basic concepts of green chemistry, elve principles of green chemistry.	green m	ethods, gree	en pro	ducts
Green	Chemistr		ave principles of green enemistry.			(18	Hrs)
		•	en Chemistry – Difference between gree	n and en	vironmental		
			and green products – Twelve principle				
		examples				,	
	ome 3	The stu	dents will apply this knowledge to car uctured materials.	ry out g	reen synthes	sis of	K6
		nanosti	Unit – IV				
		To und	erstand more information about desig	ming gr	on synthesis	choi	co of
Objecti	ve 4		g materials, catalyst and various green s			s, choi	ce of
		starting	, materials, catalyst and various green s	ynthesis	meenous		
		Synthesi	is				Hrs)
Choice	of startin	Synthes ig material	is s – Reagents – Catalysts – Biocatalysts -	- Polyme	r supported c	atalyst	s and
Choice solvents	of startin s – Syntl	Synthes ig material hesis invo	is ls – Reagents – Catalysts – Biocatalysts - blving principles of green chemistry –	- Polyme Microwa	r supported c ive assisted	atalyst synthe	s and sis –
Choice solvents Ultrasou	of startin s – Syntl und assist	Synthesi g material hesis invo ted synthe	is s – Reagents – Catalysts – Biocatalysts -	- Polyme Microwa	r supported c ive assisted	atalyst synthe	s and sis –
Choice solvents Ultrasou	of startin s – Syntl	Synthesi g material hesis invo ted synthe	is ls – Reagents – Catalysts – Biocatalysts – olving principles of green chemistry – esis – Photoinduced synthesis – Polymer	- Polymer Microwa supporte	r supported c ave assisted ed synthesis	atalyst synthe – Syn	s and sis –
Choice solvents Ultrasou using bi	of startin s – Syntl und assist ocatalyst.	Synthesi g material hesis invo ted synthe The stu	is ls – Reagents – Catalysts – Biocatalysts – blving principles of green chemistry – esis – Photoinduced synthesis – Polymer idents will comprehend the characteris	- Polymer Microwa supporte	r supported c ave assisted ed synthesis	atalyst synthe – Syn	s and sis – thesis
Choice solvents Ultrasou	of startin s – Syntl und assist ocatalyst.	Synthesi g material hesis invo ted synthe The stu	is Is – Reagents – Catalysts – Biocatalysts – blving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist in synthesis and the role of catalysts.	- Polymer Microwa supporte	r supported c ave assisted ed synthesis	atalyst synthe – Syn	s and sis –
Choice solvents Ultrasou using bi	of startin s – Syntl und assist ocatalyst.	a Synthesi g material hesis invo ted synthe The stu in green	is Is – Reagents – Catalysts – Biocatalysts – plving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist n synthesis and the role of catalysts. Unit – V	- Polyme Microwa supporte	r supported c ave assisted ed synthesis tarting mate	atalyst synthe – Syn erials	s and esis – thesis K2
Choice solvents Ultrasou using bi	of startin s – Syntl und assist ocatalyst. ne 4	Synthesi g material nesis invo ted synthe The stue in green To kno	is Is – Reagents – Catalysts – Biocatalysts – blving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist in synthesis and the role of catalysts.	- Polyme Microwa supporte	r supported c ave assisted ed synthesis tarting mate	atalyst synthe – Syn erials	s and esis – thesis K2
Choice solvents Ultrasou using bi Outcon	of startin s – Syntl und assist ocatalyst. ne 4	a Synthesi g material hesis invo ted synthesi The stu in green To kno pharma	is Is – Reagents – Catalysts – Biocatalysts – olving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist in synthesis and the role of catalysts. <u>Unit – V</u> w about the application of green ch	- Polyme Microwa supporte	r supported c ave assisted ed synthesis tarting mate	atalyst synthe - Syn rials biome	s and esis – thesis K2
Choice solvents Ultrasou using bi Outcon Objecti Green	of startin s – Syntl und assist ocatalyst. ne 4 ve 5 Technolo	a Synthesi g material hesis invo ted synthe The stu in green To kno pharma ogies	is Is – Reagents – Catalysts – Biocatalysts – olving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist in synthesis and the role of catalysts. <u>Unit – V</u> w about the application of green ch	- Polymer Microwa supporta stics of s emistry	r supported c ave assisted ed synthesis tarting mate in energy,	atalyst synthe - Syn rials biome (18	s and esis – thesis K2 dical, Hrs)
Choice solvents Ultrasou using bi Outcon Objecti Green Applica	of startin s – Syntl und assist ocatalyst. ne 4 ve 5 Technolo tion of g	Synthesi g material hesis invo ted synthe The stu in green To kno pharma ogies reen cher	is Is – Reagents – Catalysts – Biocatalysts – blving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist a synthesis and the role of catalysts. Unit – V w about the application of green characterial instry – Environmental applications – E	- Polymer Microwa support stics of s emistry Energy ap	r supported c ave assisted ed synthesis tarting mate in energy,	atalyst synthe - Syn rials biome (18	s and esis – thesis K2 dical, Hrs)
Choice solvents Ultrasou using bi Outcon Objecti Green Applica	of startin s – Syntl und assist ocatalyst. ne 4 ve 5 Technolo tion of g	Synthesig g material hesis invoc ted synthe The stu in green To kno pharma ogies reen cher armaceuti	is Is – Reagents – Catalysts – Biocatalysts – olving principles of green chemistry – esis – Photoinduced synthesis – Polymen indents will comprehend the characterist is synthesis and the role of catalysts. Unit – V w about the application of green characterial instry – Environmental applications – E cal applications – Agricultural application	- Polymer Microwa support stics of s emistry Energy ap	r supported c ave assisted ed synthesis tarting mate in energy, pplications –	atalyst synthe – Syn erials biome (18 Biome	s and ssis – thesis K2 dical, Hrs) edical
Choice solvents Ultrasou using bi Outcon Objecti Green Applica	of startin s – Syntl und assist ocatalyst. ne 4 ve 5 Technolo tion of g ions – Ph	Synthesi g material nesis invo ted synthesi The stu in green To kno pharma ogies reen cher armaceuti The stu	is Is – Reagents – Catalysts – Biocatalysts – blving principles of green chemistry – esis – Photoinduced synthesis – Polymen idents will comprehend the characterist a synthesis and the role of catalysts. Unit – V w about the application of green characterial instry – Environmental applications – E	- Polymer Microwa supporta stics of s emistry Energy ap is. analyze t	r supported c ave assisted ed synthesis tarting mate in energy, oplications – the value of	atalyst synthe – Syn erials biome (18 Biome green	s and ssis – thesis K2 dical, Hrs) edical

Ahluwalia, V.K. (2013). Green chemistry: A text book. Narosa Publishing House.

Arvind N. Shukla. (2013). Industrial bioprocess technology. DPH.

Bhatia, S.C. (2002). Environmental chemistry. CBS.

Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (Eds.). (2013). Design of advanced photocatalytic materials for energy and environmental applications (pp. 1-348). London: Springer.

He, J. (2016). Nanomaterials in energy and environmental applications. Pan Stanford.

Sodhi, G.S. (2013). Fundamental concepts of environmental chemistry. Narosa Publishing House.

Sorensen, B. (2015). Renewable Energy: Physics, Engineering, Environmental Impacts. Economics & Planning, Academic Press.

Online resources:

Introduction to Environmental Science - 2nd Edition - Open Textbook Library (umn.edu) https://open.umn.edu/opentextbooks/textbooks/562

https://bookboon.com/en/environmental-science-ebooks

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118720011

K1-Remember	K2-Understand	K3-Apply	K4-Analyze K5-Evaluate		K6-Create
		N	ame of the Course	e Teacher: Dr. S. H	Karuppuchamy

Course Outcome (CO) Vs Programme Outcomes (PO)

СО	РО									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	2	1	2	2	1	2
CO2	2	2	2	2	2	112	2	2	2	2
CO3	2	2	2		2	1	2	2	2	-
CO4	2	2	2	2	1		2	1	-	1
CO5	3	1	3	2	2	9-	2	1	1	2
W.Avg.	2.2	1.8	2.4	1.4	1.8	0.4	2.0	1.6	1.2	1.4

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

со	PSO								
CO	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	2	1	2	1	2				
CO2	2	2	2	2	2				
CO3	2	1	2	1	1				
CO4	1	1	2	1	1				
CO5	2	2	2	1	2				
W.Avg.	1.8	1.4	2	1.2	1.6				

S –Strong (3), M-Medium (2), L- Low (1)

Core			Semester –II		1	1
Core		ourse Code:	Solar Thermal Energy	Т	Credits: 5	Hours : 5
		540202		1		110415.0
		m	Unit – I			• • •
Object	tive 1		d solar radiation on the earth			trial radiation
5		terrestrial rac	liation and measurement of sola	r radiati	on.	(10 II.ug)
			ement Irface – Spectral energy distributi	on of col	or radiation	(18 Hrs)
			on – Solar insolation – Depletic			
			– Diffuse and Global radiation			
	0		- Sunshine recorder.	- Wiedst	frement of se	
<u>i jiunoi</u>			will be able to learn solar radi	ation on	the earth su	irface.
Outcon	ne 1		al radiation, terrestrial radiation			· · · · · · · · · · · · · · · · · · ·
		radiation.				
		1	Unit – II			1
Object	tive 2	To learn more	e knowledge about solar collecto	rs and ty	pes of solar c	ollectors.
Solar C			<u> </u>	·	_	(18 Hrs)
			ar collectors – Non-Concentrat			
	•	•• •	type collectors) - Air based solar	collector	s – Evacuated	tube collectors
– Swim	ming p	ool absorbers.				1
Outco	me 2		gain more knowledge about sola	r collecto	ors and the ty	pes of K2
0 4000		solar collector				
<u></u>			Unit – III			
Objecti	ive 3	To study the t	hermodynamic cycles and solar	thermal	power plants	
		l Power Plant		0		(18 Hrs)
	•	•	ot cycle – Rankine cycle – Brayto	n cycle –	•••	•••
	oned c	welee Solar fl		1		1 11 1
		•	hermal power plants – Hybrid so	olar powe	er plants – Sc	olar pond based
ciccure	power	plant.		-	-	-
Outcon	-	plant. The students	analyze the advantages and c	-	-	-
	-	plant.	analyze the advantages and c	-	-	ermal
	-	plant. The students power plants.	analyze the advantages and c Unit – IV	hallenge	s of solar th	ermal K4
	me 3	plant. The students power plants. To comprehe	analyze the advantages and c Unit – IV end about solar water heating	hallenge	s of solar th	ermal K4
Outco Object	me 3 tive 4	plant. The students power plants. To comprehe cooling, dome	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool	hallenge	s of solar th	ermal K4
Outcon Object Solar T	me 3 tive 4	plant. The students power plants. To comprehe cooling, dome l Heating and (analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System	hallenge systems king.	s of solar th	ermal K4 e heating and (18 Hrs)
Outco Object Solar T Solar w	me 3 tive 4 Therma	plant. The students power plants. To comprehe cooling, dome I Heating and C eating system –	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive s	hallenge systems king.	s of solar th , solar spac ting – Solar t	ermal K4 e heating and (18 Hrs) furnace – Solar
Outcor Object Solar T Solar w chimney	me 3 tive 4 Therma vater he	plant. The students power plants. To comprehe cooling, dome I Heating and (cating system – = – Solar cooke	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System	hallenge systems king.	s of solar th , solar spac ting – Solar t	ermal K4 e heating and (18 Hrs) furnace – Solar
Outco Object Solar T Solar w	me 3 tive 4 Therma vater he	plant. The students power plants. To comprehe cooling, dome l Heating and (cating system – c – Solar cooke ystems.	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive s	hallenge systems king. solar hea Solar spa	s of solar th , solar spac ting – Solar f ce heating –	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered
Outcon Object Solar T Solar w chimney	me 3 tive 4 Therma vater he y plant ation sy	plant. The students power plants. To comprehe cooling, dome I Heating and C eating system – - Solar cooke ystems. The students	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive s ers – Solar powered distiller – S	hallenge systems king. solar hea Solar spa rater hea	s of solar th , solar spac ting – Solar f ce heating – ting systems,	e heating and (18 Hrs) furnace – Solar Solar powered
Outcon Object Solar T Solar w chimney refrigera	me 3 tive 4 Therma vater he y plant ation sy	plant. The students power plants. To comprehe cooling, dome I Heating and C eating system – z – Solar cooke ystems. The students space heating	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive s ers – Solar powered distiller – S will comprehend about solar w	hallenge systems king. solar hea Solar spa rater hea heating	s of solar th , solar spac ting – Solar t ce heating – ting systems, and solar co	e heating and (18 Hrs) furnace – Solar Solar powered
Outcon Object Solar T Solar w chimney refrigera	me 3 tive 4 Therma vater he y plant ation sy	plant. The students power plants. To comprehe cooling, dome l Heating and (eating system – z – Solar cooke ystems. The students space heating Apply this km	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive solar ers – Solar powered distiller – S will comprehend about solar water owledge to develop solar heating Unit – V	hallenge systems king. solar hea Solar spa vater hea heating s systems	s of solar th , solar space ting – Solar t ce heating – ting systems, and solar co	e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3
Outcom Object Solar T Solar w chimney refrigera Outcom	me 3 tive 4 Therma vater he y plant ation sy me 4	plant. The students power plants. To comprehe cooling, dome I Heating and (eating system – : – Solar cooke ystems. The students space heating Apply this known	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive se ers – Solar powered distiller – S will comprehend about solar water g and cooling, domestic water for owledge to develop solar heating Unit – V ore information about solar powered solar solar powered solar heating	hallenge systems king. solar hea Solar spa cater hea heating systems panel m	s of solar th , solar space ting – Solar f ce heating – ting systems, and solar co anufacturing	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3
Outcom Object Solar T Solar w chimney refrigera Outcom	me 3 Therma Vater he y plant ation sy me 4	plant. The students power plants. To comprehe cooling, dome I Heating and (cating system – z – Solar cooke ystems. The students space heating Apply this known To learn mode economics, economics, economics	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive s ers – Solar powered distiller – S will comprehend about solar w g and cooling, domestic water owledge to develop solar heating Unit – V pre information about solar j ology, solar thermal market, out	hallenge systems king. solar hea Solar spa cater hea heating systems panel m	s of solar th , solar space ting – Solar f ce heating – ting systems, and solar co anufacturing	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 ; technologies, t potential.
Outcom Object Solar T Solar w chimney refrigera Outcom Object Design	me 3 Therma Vater he y plant ation sy me 4 tive 5 of Indu	plant. The students power plants. To comprehe cooling, dome l Heating and (eating system – z – Solar cooke ystems. The students space heating Apply this known To learn mode economics, economics,	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar coo Cooling System Active solar heating – Passive s ers – Solar powered distiller – S will comprehend about solar w g and cooling, domestic water owledge to develop solar heating Unit – V ore information about solar j ology, solar thermal market, out rstems	hallenge systems king. solar hea Solar spa vater hea heating systems systems panel m look and	s of solar th , solar spac ting – Solar f ce heating – ting systems, and solar co anufacturing developmen	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 g technologies, t potential. (18 Hrs)
Outcom Object Solar T Solar w chimney refrigera Outcom Object Design Solar p	me 3 tive 4 Therma vater he y plant ation sy me 4 tive 5 of Indu-	plant. The students power plants. To comprehe cooling, dome I Heating and G eating system – z – Solar cooke ystems. The students space heating Apply this know To learn mode ustrial Solar Synamufacturing te	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive sers – Solar powered distiller – S will comprehend about solar w g and cooling, domestic water owledge to develop solar heating Unit – V ore information about solar joology, solar thermal market, out rstems echnologies – Solar panel speci	hallenge systems king. solar hea Solar spa cater hea heating systems panel m look and fications	s of solar th , solar space ting – Solar to ce heating – ting systems, and solar co anufacturing developmen (Mechanical	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 technologies, t potential. (18 Hrs) and Electrical
Outcom Object Solar T Solar W chimney refrigera Outcom Object Design Solar p specific	me 3 tive 4 Therma vater he y plant ation sy me 4 tive 5 of Indipanel n actions)	plant. The students power plants. To comprehe cooling, dome I Heating and C eating system – z – Solar cooke ystems. The students space heating Apply this km To learn mode economics, econo	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive sers – Solar powered distiller – S will comprehend about solar w g and cooling, domestic water owledge to develop solar heating Unit – V ore information about solar joology, solar thermal market, out rstems echnologies – Solar panel special heating as support heating – E	hallenge systems king. solar hea Solar spa cater hea heating systems panel m look and fications	s of solar th , solar space ting – Solar to ce heating – ting systems, and solar co anufacturing developmen (Mechanical	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 ; technologies, t potential. (18 Hrs) and Electrical
Outcom Object Solar T Solar w chimney refrigera Outcom Object Design Solar p specific	me 3 tive 4 Therma vater he y plant ation sy me 4 tive 5 of Indipanel n actions)	plant. The students power plants. To comprehe cooling, dome I Heating and C cating system – z – Solar cooke ystems. The students space heating Apply this known To learn mode economics, ec	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive sers – Solar powered distiller – S will comprehend about solar w g and cooling, domestic water is owledge to develop solar heating Unit – V ore information about solar pology, solar thermal market, out stems echnologies – Solar panel special heating as support heating – E poment potential.	hallenge systems king. solar hea Solar spa vater hea heating s systems panel m look and fications conomics	s of solar th , solar space ting – Solar to ce heating – ting systems, and solar co anufacturing developmen (Mechanical s – Ecology –	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 ; technologies, t potential. (18 Hrs) and Electrical – Solar thermal
Outcom Object Solar T Solar W chimney refrigera Outcom Object Design Solar p specific market -	me 3 Therma vater he y plant ation sy me 4 tive 5 of Indu- vanel n vations) – Outle	plant. The students power plants. To comprehe cooling, dome I Heating and C eating system – : – Solar cooke ystems. The students space heating Apply this known To learn mode economics, ec	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive se ers – Solar powered distiller – S will comprehend about solar water owledge to develop solar heating Unit – V ore information about solar pology, solar thermal market, out stems echnologies – Solar panel specia al heating as support heating – E poment potential. s will gain noteworthy inform	hallenge systems king. solar hea Solar spa cater hea heating systems panel m look and fications conomics nation	s of solar th , solar space ting – Solar f ce heating – ting systems, and solar co anufacturing developmen (Mechanical s – Ecology –	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 ; technologies, t potential. (18 Hrs) and Electrical - Solar thermal
Outcon Object Solar T Solar W chimney refrigera Outcon Object Design Solar p specific	me 3 Therma vater he y plant ation sy me 4 tive 5 of Indu- vanel n vations) – Outle	plant. The students power plants. To comprehe cooling, dome I Heating and C cating system – : – Solar cooke ystems. The students space heating Apply this know To learn mode economics, eco	analyze the advantages and c Unit – IV end about solar water heating estic water heating and solar cool Cooling System Active solar heating – Passive sets ers – Solar powered distiller – S will comprehend about solar water owledge to develop solar heating Unit – V ore information about solar pology, solar thermal market, out stems echnologies – Solar panel special heating as support heating – E poment potential.	hallenge systems king. solar hea Solar spa cater hea heating systems panel m look and fications conomics nation	s of solar th , solar space ting – Solar f ce heating – ting systems, and solar co anufacturing developmen (Mechanical s – Ecology –	ermal K4 e heating and (18 Hrs) furnace – Solar Solar powered , solar oking. K3 ; technologies t potential. (18 Hrs) and Electrical - Solar thermal

- Sukhatme, S.P. & Nayak J.K. (2015). *Solar energy: Principles of thermal collection and storage*. McGraw Hill Education (India) Private Limited.
- Vignola, F., Michalsky, J., & Stoffel, T. (2012). Solar and Infrared Radiation Measurements. CRC Press.
- Yogi Goswami, D. (2018). Principles of Solar Engineering (3rd Edition). CRC Press
- Garg, H.P. (2016). Solar energy: Fundamentals and applications. McGraw Hill.
- Kothari, D.P. (2014). Renewable energy resources and emerging technologies. PHI Learning.
- Sukhatme, S.P. (2015). Solar energy: Principles of thermal collection and storage. McGraw Hill.
- Tester, J. W., Drake, E. M., Driscoll, M. J., Golay, M. W., & Peters, W. A. (2012). Sustainable energy: choosing among options. PHI Learning.
- Walker, A. (2014). Solar Energy: Technologies and project delivery for buildings. John Wiley & Sons.
- Md Hasanuzzaman (2022) *Technologies for Solar Thermal Energy: Theory, Design and Optimization*, Academic Press Publishers.

Zhifeng Wang (2019) Design of Solar Thermal Power Plants, Academic Press Publishers.

Brian Norton (2012) Solar Energy Thermal Technology, Springer Science & Business media.

Online resources:

https://onlinelibrary.wiley.com/doi/10.1002/9781118720011.ch9

https://link.springer.com/referenceworkentry/10.1007/978-1-0716-1422-8_923- Solar Thermal Energy: Introduction

https://link.springer.com/referencework/10.1007/978-1-0716-1422-8 - solar thermal energy

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
Name of the Course Teacher: Dr. A. Nithya								

Course Outcome (CO) Vs Programme Outcomes (PO)

<u> </u>		РО									
CO	PO1 PO2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	2	2	1	2	2	1	1	1	1	1	
CO2	2	2	2	2	2		2	2	2	1	
CO3	2	1	2	3	2		2	2	2	2	
CO4	2	2	2	2	2	-	2	2	2	2	
CO5	3	2	2	1	2	1	2	2	2	3	
W.Avg.	2.2	1.8	1.8	2.0	2.0	0.4	1.8	1.8	1.8	1.8	

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5				
C01	2	1	1	1	1				
CO2	3	2	2	2	2				
CO3	2	2	2	3	2				
CO4	2	2	3	2	2				
CO5	2	2	2	1	2				
W.Avg.	1.8	1.4	2	1.2	1.6				

S – Strong (3), M-Medium (2), L- Low (1)

	Semester –II						
Core	Course Code: 540203		Hydrogen Energy Systems		Credits: 5	Но	ours : 5
			Unit-I				
Object	tive 1		y about the basic of hydrogen energy, j duction of hydrogen from water splitting		rties of hydro	gen	storage
Introdu	iction					(18 Hrs)
General	l introd	luction to	infrastructure requirement for hydrogen	produ	ction, storage,	, dis	pensing,
utilizati	on – Pr	operties o	f hydrogen storage as fuel – hydrogen prod	uction	plants.	-	_
Hydrog	gen fro	m Water	Splitting				
Water	electrol	lysis – V	Vater splitting with solar energy – The	ermocl	hemical water	spl	itting –
Photoel	ectroch	emical co	ells – Direct hydrogen production – Pho	oto-Bio	ochemical cell	s –	Oxygen
Evoluti	on Read	ction (OE	R) – Hydrogen Evolution Reaction (HER).				
0-4	1	The stu	dents will be able to understand variou	is pro	duction meth	ods	K2
Outco	me I		age of hydrogen energy.	•			KZ
			Unit – II				
Object	tive 2	To acqu	ire more information about hydrogen pr	oducti	on from fossil	fuel	s.
Hydrog	gen fro	m Fossil l	Tuels			(1	l8 Hrs)
Present	and pr	ojected us	es for hydrogen - Natural gas - Reformin	g of n	atural gas – Ga		
processes - Characteristics of steam reforming of methane - Partial oxidation of hydrocarbons -							
Membrane developments for gas separation – Membrane types – Membrane reactors – Coal and							
other fu	els.	•	I Doomoo 60.4				
The students will be able to analyze the feasibility of hydrogen							
Outco	me 2		ion from fossil fuels.			0	K4
Unit – III							
Object	tive 3	To learr	about hydrogen production from bioma	ISS.			
0		m Biomas				(1	8 Hrs)
			n production potential – Hydrogen producti	ion by	fermentation -		
			gales – Biochemical pathway for ferme				
			production by other bacteria – Co-product				
Hydrogen inhibition – Role of sulphur – Sulfidogenesis – Use of other carbon sources obtained from							
agricultural residues – Process and culture parameters.							
Outco			lents will be able to apply this knowledge	to pro	oduce hydrog	en	K3
			Unit – IV	1	¥ 6		
		To know	v about types of fuel cell, fuel cell effici	iencies	s and applica	tions	of fuel
Object	ave 4	cells.					
Fuel Co	ells		Station and the second states			(1	l8 Hrs)
Principle and components - Electrochemistry of fuel cells - Nernst equation - Performance and							
evaluation of fuel cells – Types of fuel cells: Low-to-medium temperature – Phosphoric acid fuel cell							
- Alkaline fuel cell - Direct Borohydride fuel cell - Proton exchange membrane fuel cell - Direct							
methanol Fuel cell – Micro fuel cells.							
High temperature – Molten carbonate fuel cell – Internal reforming – Direct carbon fuel cell – Solid							- Solid
oxide fuel cell - Fuel cell efficiencies - Applications of fuel cells - Large stationary power							
generation – Small stationary power generation – Mobile power – Portable power – Prognosis for							
fuel cells.							
Outco	me 4		lents will be able to know about the typ ies and applications of fuel cells.	es of	fuel cell, fuel	cell	K2

		Un	it – V			
Objective 5	To acquire more materials for hydro			l storage and	physical storage	
Hydrogen Sto	rage Materials and T	echnology			(18 Hrs)	
	age: Compressed hyd					
	– Ammonia – Ar					
	ysical storage: Cryo					
	vs – Glass microsphe					
storage – Hydr	ogen powered vehicle					
Outcome 5	The students will be				rage and K2	
	physical storage ma	terials for h	ydrogen storage	•	112	
Suggested Rea	adings:					
	& paolo Tartarini (201				l Technology for	
the hydrog	gen economy, Springer	science and	Business Media	Publishers.		
	nam, Roman J. press, I on to Hydrogen Techn				akacs (2017)	
International E	nergy Agency & Orga and Fuel cells, Simor	nisation for	Economics Co-oj		elopment (2004)	
	Airanda (2018) <i>Science</i> press Publishers.	e and Engine	eering of Hydroge	en-Based Energy	Technologies,	
Springer (ki, Hai-wen Li, Akan I 2016) <i>Hydrogen Ener</i> ng Publishers.					
Online Resou	rces:	0.2	Same	<u> </u>		
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527674268 - Hydrogen Science and						
	Engineering : Materials, Processes, Systems and Technology					
1 1	https://link.springer.com/book/10.1007/978-3-319-93461-7 - hydrogen energy					
https://www.sciencedirect.com/science/article/pii/S1364032121004688						
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create	
			Name of th	e Course Teacher	r: Dr. S. Natarajan	

Name of the Course Teacher: Dr. S. Natarajan

СО	РО									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	2	1	2	2	2	2
CO2	2	1	2	1	1	-	2	2	2	2
CO3	2	2	2	2	2	1	2	1	2	2
CO4	2	1	1	2	2	-	1	2	1	2
CO5	2	2	2	2	1	-	2	2	2	2
W.Avg.	2.2	1.6	2.0	1.6	1.6	0.4	1.8	1.8	1.8	2.0

Course Outcome (CO) Vs Programme Outcomes (PO)

S –Strong (3), M-Medium (2), L- Low (1)

СО	PSO							
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	2	2	2	2			
CO2	2	2	2	2	2			
CO3	2	1	2	2	2			
CO4	2	2	2	3	2			
CO5	3	2	1	2	2			
W.Avg.	2.4	1.8	1.8	2.2	2			

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

S –Strong (3)	, M-Medium	(2), L- Low	(1)
---------------	------------	-------------	-----

				Semeste	r-II				
Core		rse Code : 540207	0	y Practical-		Р	Credit: 4	Hour	s : 8
Ohior		To much and	•	thesis of Nai		erials			
Object				ctured mater					
 Syn Syn Syn Syn 	nthesis on thesis on thesis of	of one-dimens of nanocompo of oxide nano of conducting of visible ligh	site mater materials b polymer f	ials by solution by hydrotherr for energy app	on gro nal me	wth method.	•	a capping ager	ıt.
Outco	me 1	The stude methods.	nts will k	be able to	develo	op na	nomaterials	by various	K6
		1	Ana	alysis of Nan	nomat	erials			
Objec	tive 2	To unders	stand the j	physiochemi	ical pr	operti	es of nanom	aterials	
7. Ele 8. UV	ctroche V-Visibl	es for calcula mical charact e spectral ana cterization of	erization o lysis of dy	f metal oxide e-modified se	e nano emico	materi nducto	als. r oxide thin f		
Outco	me 2	The stude properties.	Sa urw	IAPPA UNIX	£3531		various phy	siochemical	K4
Objec	tive 3		it the dye	italysis and e removal e l chromium	fficier	ncy of	photocataly	yst and estin	nate the
11. Est	imation	ition of organ of dissolved of chr <mark>omiu</mark> m	ic pollutar oxyg <mark>e</mark> n in	its using phot industrial wa	tocatal astewa	yst.			
Outco	me 3			determine chromium.		dye r	emoval effi	ciency and	K5
			18:		Y .	10	*Any other e	equivalent exp	eriments
-	opuchar	0					-	United Agence	vies.
https://w https://p	www.sc /ww.sci ubs.rsc.	iencedirect.co encedirect.co org/en/conten	n/science/ t/articlelar	article/abs/pi	i/B97	801282	20569300001	3	
K1-Remo	ember	K2-Understa	nd	K3-Apply	K4-A1	÷	K5-Evaluat		
				Nan	ne of t	he Coı		Dr. S. Karupp Dr. C. Karthik Dr. A. Nithya Dr. S. Nataraj	teyan

Course Outcome (CO) Vs Programme Outcomes (PO)

СО	РО									
0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	1	1	2	2	2	2
CO2	3	3	2	3	3	1	2	2	2	2
CO3	2	2	2	2	1	1	2	2	1	1
W.Avg.	2.7	2.3	2.3	2.3	1.7	1.0	2.0	2.0	1.7	1.7

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO			PSO		
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	2	2	2
CO2	3	2	3	3	2
CO3	2	2	2	2	2
W.Avg.	2.3	2.0	2.3	2.3	2.0

			Semester –III					
Core		se Code: 40301	Photovoltaics		T	Credits: 5	Hour	s : 5
			Unit-I		•	I	•	
Objec	tive 1		tand semiconductors, direct & actors and device fabrication.	indirect	band	lgap, Intrinsic	& extr	insic
Basic C	Concepts						(18	Hrs)
			ologies - Materials and Design					
			semiconductor - Compound se					
			and drift of carriers optical ab	sorption -	Ser	niconductor jui	nctions:	P-N
-		tky barriers						
			parent conducting oxides – Anti-r	eflection c	oatin	gs – Metal cont	act – De	evice
characte	erization						- [
Outco	ome 1	The stuc semicondu materials.	ents will be able to un actors and apply this knowle			characteristic ate semicondu		K4
			Unit-II					
Objec	tive 2	To acquir	e more information about silico	n solar cel	ls an	d thin film sola	r cells.	
v		n Film Sola					(18	Hrs)
			ction – Types of silicon solar cell	s: Mono-c	rystal	lline – Poly-cry		
			olar cells – Processing technolog					
			oduction – Thin film solar cells				i solar c	ell –
			ell – CIGS solar cell – CZTS so					
cells –	Thin fil	m depositio	n techniques – Physical Vapour	Depositio	n (P	VD) – Electro-	depositi	on –
			MBE) – Metal Organic Chemica					
			Deposition (PECVD) - Advanta				,	
Outco			nts will <mark>acquire mo</mark> re informa				and	K2
		-	Unit-III					
Objec	tive 3	To learn a	bout organic-based solar cells a	nd tanden	n sola	ar cells.		
v		Photovolta					(18]	Hrs)
0			(DSSC) - Components and Wo	orking prin	nciple	s – Fabrication		
) – Materials and Mechanism					
			s of PSC – Materials for PSC – T				× ×	,
			nts will gain more knowledge al				ndem	IZ2
Outco	ome 3		Apply this knowledge to develo	0				K3
			Unit – IV	•			ľ	
Ohisti		To under	stand PV modules, identical a	nd non-id	lentic	cal cells, and	hybrid	SPV
Objecti	lve 4	power sys	ems				•	
			ls and Assembly				(18]	
Introduc	ction to	PV module	s: Identical and Non-identical c	ells – Mo	dule	structuring and	assemb	oly –
			Thermal considerations – Electric					
			onnects - Crystalline and thin fil					
			is. Solar PV concentrators - Con-					
		ower systen		-				
Outoo	no 1	The stude	nts gain more knowledge abo	ut PV mo	dule	s, identical an	d non-	K)
Outcon	ue 4		ells, and hybrid SPV power sys					K2

	Unit – V
	To know about PV system components, remote area power systems, specific
Objective 5	purpose photovoltaic systems, SPV power plant design tools, methodologies and
	SPV economics.
	em Components & System Design (18 Hrs)
	PV systems – System components: module and array – Charge controllers – Inverters – ver conditioning and Regulation – Grid connected power systems – Remote area power
	cific purpose Photovoltaic systems: Space – Marine – Telecommunication – Water
	igeration. SPV power plant design tools and methodologies – SPV economics.
	The students gain more knowledge about Solar PV System, Components
Outcome 5	and System Design. Critically analyze the solar PV for indoor and outdoor K4
	applications.
Suggested Read	
Balfour, J. R., S	haw, M. & Jarosek, S. (2013). Introduction to photovoltaic. Jones & Bartlett Publishers.
Tiwari, G. N & Publishing.	Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. RSC
Solanki, C.S. (2 Pvt. Ltd.	2015). Solar photovoltaics Fundamentals, Technologies and Applications. PHI Learning
Sean, W. (2015)). Solar Photovoltaics Basics. Routledge Taylor & Francis Group.
Sabhu, T. & Ap Academic Pi	parna, T. (2018). Perovskite Photovoltaics Basics to advanced concepts and implantation. ress.
Pankaj Kumar (2017). Organic Solar Cells. CRC Press.
Balfour, J. R Publishers.	& Shaw, M. (2013). Introduction to photovoltaic system design. Jones & Bartlett
Online resourc	es:
	rary.wiley.com/doi/book/10.1002/9781118927496 - Photovoltaic Solar Energy: From
	entals to Applications
	rary.wiley.com/doi/book/10.1002/9780470974704 - Handbook of Photovoltaic Science
and Engi	
https://onlinelib Practice	rary.wiley.com/doi/book/10.1002/9781119976998 - Photovoltaics: System Design and
K1-Remember	K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create
AI-Aemember	Name of the Course Teacher: Dr. S. Karuppuchamy
	Tune of the Course Federici. Dr. 5. Karuppuenany

СО					Р	0				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	3	1	2	1	2	2	2	2
CO2	3	1	2	2	1	-	2	2	2	2
CO3	2	2	2	2	2	1	2	1	2	2
CO4	2	1	1	2	2	-	1	2	1	3
CO5	3	2	2	2	2	1	2	2	2	3
W.Avg.	2.4	1.6	2.0	1.8	1.8	0.6	1.8	1.8	1.8	2.4

Course Outcome (CO) Vs Programme Outcomes (PO)

СО	PSO								
0	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	2	2	2				
CO2	3	1	2	2	2				
CO3	2	2	2	2	1				
CO4	2	1	2	2	2				
CO5	2	2	1	2	2				
W.Avg.	2.4	1.6	1.8	2	1.8				
S -	-Strong (3), M-Me	edium (2)	, L- Low	(1)				

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

			Semester –III		1		
Core		rse Code: 40302	Energy Storage Systems	Т	Credits: 5	Hou	rs : 5
		1	Unit – I				
Objectiv	ve 1	To unders	stand energy storage, the need for storage.	r energ	y storage and d	ifferent	modes
Introduc	ction	01 01101 87				(18	8 Hrs)
Introduct	tion to	energy sto	orage – Need for energy storage an	d diffe	rent modes of en		
			al energy – Thermal energy – Elect				
		parative ana				C	
Outcom	ne 1		ents will be able to understand prage systems.	notewo	orthy knowledge	e about	K2
		energy su	Unit – II				
Objectiv	ve 2	To study (the batteries, types, design and co	nstruct	ion		
Batteries		10 study	the batteries, types, design and con	istiuci	1011.	(15	3 Hrs)
		Types De	sign, Characteristics and Construct	tion of	batteries – Lead		/
			n - Types of lead acid battery - C				
			omative) batteries.	marging	s and Dischargin	is proper	1105 01
			ents will understand the science b	ehind 1	the batteries and	d annly	
Outcom	ne 2		ledge to develop battery.	china	the batteries and	a appiy	K6
			Unit – III				
Objectiv	ve 3	To learn 1	nore knowledge about lithium ion	and m	etal-air batterie	S.	
0			ð				II)
LITHIIM	-1011 6	z wietai-Ah	· Batteries			(15	Hrs)
			• Batteries inciple and Construction – Anode	s and	cathodes – Na	· · ·	Hrs) als for
Lithium-	ion B	atteries: Pr	inciple and Construction – Anode			nomateri	als for
Lithium-	ion B and ca	atteries: Pr				nomateri	als for
Lithium- anodes a batteries.	ion B and ca	atteries: Pr athodes – H	inciple and Construction – Anode Fabrication – Lithium-Sulphur bat	tery –	Merits and dem	nomateri erits of	als for Li-ion
Lithium- anodes a batteries. Metal-Ai	ion B and ca ir Batt	atteries: Pr athodes – H eries: Lithiu	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte	tery – ries: Pr	Merits and dem inciple – Compo	nomateri erits of	als for Li-ion
Lithium- anodes a batteries. Metal-Ai – Cathod	ion B and ca ir Batt les - F	atteries: Pr athodes – H eries: Lithiu abrication –	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt Im-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and	tery – ries: Pr l applic	Merits and dem inciple – Compo eations.	nomateri herits of nents – A	als for Li-ion Anodes
Lithium- anodes a batteries. Metal-Ai	ion B and ca ir Batt les - F	atteries: Pr athodes – H eries: Lithiu abrication –	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand	tery – ries: Pr l applic	Merits and dem inciple – Compo eations.	nomateri herits of nents – A	als for Li-ion
Lithium- anodes a batteries. Metal-Ai – Cathod	ion B and ca ir Batt les - F	atteries: Pr athodes – H eries: Lithiu abrication – The stud	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand	tery – ries: Pr l applic	Merits and dem inciple – Compo eations.	nomateri herits of nents – A	als for Li-ion Anodes
Lithium- anodes a batteries. Metal-Ai – Cathod	ion B and ca ir Batt les - F e 3	atteries: Pr athodes – H eries: Lithiu abrication – The stud ion batte	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and tents will be able to understand ery.	tery – ries: Pr <u>1 applic</u> the pe	Merits and dem inciple – Compo ations. rformance of L	nomateri herits of nents – A ithium-	als for Li-ion Anodes K2
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Superca	ion B and ca ir Batt les - F e 3 $\frac{7}{2}e 4$ pacito	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio	tery – ries: Pr <u>l applic</u> the pe n of su	Merits and dem inciple – Compo ations. rformance of L percapacitors ar	nomateri lerits of nents – A ithium- nd fuel co (18	als for Li-ion Anodes K2 ells. 3 Hrs)
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Superca	ion B and ca ir Batt les - F e 3 $\frac{7}{2}e 4$ pacito	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. Unit – IV about the principle and fabricatio	tery – ries: Pr <u>l applic</u> the pe n of su	Merits and dem inciple – Compo ations. rformance of L percapacitors ar	nomateri lerits of nents – A ithium- nd fuel co (18	als for Li-ion Anodes K2 ells. 3 Hrs)
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio	tery – ries: Pr <u>l applic</u> the pe n of su	Merits and dem inciple – Compo ations. rformance of L percapacitors ar	nomateri lerits of nents – A ithium- nd fuel co (18	als for Li-ion Anodes K2 ells. 3 Hrs)
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito paciton – App	atteries: Pr athodes – F eries: Lithin abrication – The stud ion batter To know a or & Fuel C :: Basic Con plications.	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio	tery – ries: Pr <u>1 applic</u> the pe n of su of elec	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly	nomateri nerits of nents – A ithium- id fuel co (18 zte – Mer	als for Li-ion Anodes K2 ells. 3 Hrs) its and
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito pacito - Apj lls: Fa	atteries: Pr athodes – H eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Con plications.	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and dents will be able to understand ery. Unit – IV about the principle and fabricatio cells ponents of Supercapacitor – Types	tery – ries: Pr <u>1 applic</u> the pe n of su of elec	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla	nomateri nerits of nents – A ithium- id fuel co (18 rte – Mer ates – Fu	als for Li-ion Anodes K2 ells. B Hrs) rits and nel cell
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel catalysts	ion B and ca ir Batt les - F e 3 ve 4 pacito paciton – App Ils: Fa – Pre	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Com blications. ubrication o cious and n	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and dents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio fells ponents of Supercapacitor – Types f fuel cell – Membrane electrode a	tery – ries: Pr <u>1 applic</u> the pe n of su of elec	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla	nomateri nerits of nents – A ithium- id fuel co (18 rte – Mer ates – Fu	als for Li-ion Anodes K2 ells. B Hrs) rits and nel cell
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel catalysts	ion B and ca ir Batt les - F e 3 ve 4 pacito paciton – App Ils: Fa – Pre	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C Basic Com blications. ubrication o cious and n 1 stacks and	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio cells aponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low t	tery – ries: Pr <u>1 applic</u> the pe <u>n of su</u> of elec assemble	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla iture fuel cells –	nomateri nerits of nents – A ithium- id fuel co (18 rte – Mer ates – Fu Reversib	Anodes K2 ells. 3 Hrs) its and hel cell ble fuel
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel catalysts	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito paciton – App Ils: Fa – Pre uel cel	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Com plications. brication o cious and n l stacks and The stud	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio fells aponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications.	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the	Merits and dem inciple – Compo ations. rformance of L percapacitors ar trodes - Electroly ies – Bipolar pla iture fuel cells – working princ	nomateri nerits of nents – A ithium- ithium- ithium- (18 rte – Mer ates – Fu Reversib	Anodes K2 ells. 3 Hrs) its and hel cell ble fuel
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel catalysts cells – Fu	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito paciton – App Ils: Fa – Pre uel cel	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Com plications. brication o cious and n l stacks and The stud	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and dents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio cells aponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan actors and fuel cells and apply actors.	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the	Merits and dem inciple – Compo ations. rformance of L percapacitors ar trodes - Electroly ies – Bipolar pla iture fuel cells – working princ	nomateri nerits of nents – A ithium- ithium- ithium- (18 rte – Mer ates – Fu Reversib	als for Li-ion Anodes K2 ells. 3 Hrs) rits and nel cell ole fuel
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel catalysts cells – Fu	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito paciton – App Ils: Fa – Pre uel cel	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C Basic Con blications. abrications. abrication o cious and n 1 stacks and The stud supercapa	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. Unit – IV about the principle and fabricatio cells aponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan actors and fuel cells and apply actors. Unit – V	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the y this	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla ature fuel cells – working princ knowledge to o	nomateri nerits of nents – A ithium- ithium- ithium- (18 tte – Mer ates – Fu Reversib iple of develop	als for Li-ion Anodes K2 ells. 3 Hrs) rits and nel cell ble fuel
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Objectiv Supercap demerits Fuel Cel catalysts cells – Fu	ion B and ca ir Batt les - F e 3 ve 4 pacito paciton - App Ils: Fa - Pre uel cel ne 4	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C Basic Con blications. abrications. abrication o cious and n 1 stacks and The stud supercapa	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and dents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio cells aponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan actors and fuel cells and apply actors.	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the y this	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla ature fuel cells – working princ knowledge to o	nomateri nerits of nents – A ithium- ithium- ithium- (18 tte – Mer ates – Fu Reversib iple of develop	als for Li-ion Anodes K2 ells. 3 Hrs) rits and nel cell ole fuel
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Supercap Supercap demerits Fuel Cel catalysts cells – Fu Outcom Objectiv Hybrid I	ion B and ca ir Batt les - F e 3 <u>ve 4</u> pacito paciton – App Ils: Fa – Pre uel cel ne 4 <u>ve 5</u> Energ	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Com blications. abrication o cious and n l stacks and The stud supercapa supercapa y Systems	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio fulls uponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan actors and fuel cells and apply actors. <u>Unit – V</u> stand the concept of hybrid energy	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the y system	Merits and dem inciple – Compo- ations. rformance of L percapacitors ar trodes - Electroly ies – Bipolar pla ature fuel cells – working princ knowledge to o	nomateri nerits of nents – A ithium- ithium- id fuel c (18 rte – Mer ates – Fu Reversib iple of develop cations. (18	als for Li-ion Anodes K2 ells. B Hrs) its and nel cell ble fuel K6 Hrs)
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Supercap Supercap demerits Fuel Cel catalysts cells – Fu Outcom Objectiv Hybrid I	ion B and ca ir Batt les - F e 3 <u>ve 4</u> pacito paciton – App Ils: Fa – Pre uel cel ne 4 <u>ve 5</u> Energ	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Com blications. abrication o cious and n l stacks and The stud supercapa supercapa y Systems	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. Unit – IV about the principle and fabricatio cells aponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan actors and fuel cells and apply actors. Unit – V	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the y system	Merits and dem inciple – Compo- ations. rformance of L percapacitors ar trodes - Electroly ies – Bipolar pla ature fuel cells – working princ knowledge to o	nomateri nerits of nents – A ithium- ithium- id fuel c (18 rte – Mer ates – Fu Reversib iple of develop cations. (18	als for Li-ion Anodes K2 ells. B Hrs) its and nel cell ble fuel K6 Hrs)
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Supercap demerits Fuel Cel catalysts cells – Fu Outcom Objectiv Hybrid I Concept	ion B and ca ir Batt les - F e 3 <u>re 4</u> pacito paciton – App Ils: Fa uel cel ne 4 <u>ve 5</u> Energ of 1	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Con blications. brication o cious and n l stacks and The stud supercapa supercapa y Systems nybrid ener	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio fulls uponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan actors and fuel cells and apply actors. <u>Unit – V</u> stand the concept of hybrid energy	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble tempera d the y this y system	Merits and dem inciple – Compo ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla ature fuel cells – working princ knowledge to o ns and its applic	nomateri nerits of nents – A ithium- ithium- id fuel c (18 rte – Mer ates – Fu Reversib iple of develop cations. (18	als for Li-ion Anodes K2 ells. B Hrs) its and nel cell ble fuel K6 Hrs)
Lithium- anodes a batteries. Metal-Ai – Cathod Outcome Supercap demerits Fuel Cel catalysts cells – Fu Outcom Objectiv Hybrid I Concept	ion B and ca ir Batt les - F e 3 ve 4 pacito paciton – App lls: Fa – Pre uel cel ne 4 ve 5 Energ of 1 ions –	atteries: Pr athodes – F eries: Lithiu abrication – The stud ion batter To know a or & Fuel C : Basic Com olications. brication o cious and n l stacks and The stud supercapa supercapa y Systems hybrid ener Hybrid fuel	inciple and Construction – Anode Fabrication – Lithium-Sulphur batt um-Air, Sodium-Air, Zinc-Air batte Evaluation – Merits – Demerits and lents will be able to understand ery. <u>Unit – IV</u> about the principle and fabricatio cells uponents of Supercapacitor – Types f fuel cell – Membrane electrode a on-precious metal catalysts – Low to systems – Applications. ents will be able to understan acitors and fuel cells and apply acitors. <u>Unit – V</u> stand the concept of hybrid energy rgy systems – Battery/Supercapa	tery – ries: Pr <u>1 applic</u> the pe n of su of elec assemble cempera d the y system citor h applicat	Merits and dem inciple – Compo- ations. rformance of L percapacitors an trodes - Electroly ies – Bipolar pla ature fuel cells – working prince knowledge to of ns and its applice nybrid systems ions.	nomateri lerits of nents – A ithium- ithium- id fuel co (18 vte – Mer ates – Fu Reversib iple of develop cations. (18 – Exan	als for Li-ion Anodes K2 ells. B Hrs) its and nel cell ble fuel K6 Hrs)

Fu-Bao Wu. & Bo Yang, Ji-Lei Ye. (2019). Grid-Scale Energy Storage Systems and Applications. Academic Press.

Kiehne, H.A. (2013). Battery Technology Handbook (2nd Edition). Marcel Dekker, Inc.

Joey, J., Lei, Z. & JiuJun, Z. (2016). Lead-Acid Battery Technologies Fundamentals, Materials, and Applications. CRC Press

Gianfranco Pistoia (2014). Lithium-Ion Batteries Advances and Applications. Elsevier

- Aulice Scibioh, M & Viswanathan, B. (2020). Materials for Supercapacitor Applications. Elsevier
- Berg, H. (2015). *Batteries for electric vehicles: materials and electrochemistry*. Cambridge University Press.
- Fornasiero, P & Graziani, M. (2012). Renewable resources and renewable energy: a global challenge. CRC press.
- Franco, A. (Ed.). (2015). *Rechargeable lithium batteries: from fundamentals to applications*. Wood head publishing.

Huggins, R. A. (2009). *Solid electrolytes. Advanced Batteries: Materials Science Aspects*, 339-373. **Online Resources:**

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119555599 - Energy Storage

- https://link.springer.com/book/10.1007/978-3-319-21239-5 Energy Storage Fundamentals, Materials and Applications
- https://iopscience.iop.org/book/mono/978-0-7503-1531-9.pdf Energy Storage Systems Book IOPscience

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
	V		Name of the	Course Teacher:	: Dr. A. Nithya

Course Outcome (CO) Vs Programme Outcomes (PO)

CO		PO								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	<u></u>	2	2	2	3
CO2	2	2	2	3	1	1	2	2	3	2
CO3	3	2	2	2	2	-5	2	2	2	3
CO4	2	2	2	2	2	-	3	3	2	2
CO5	2	2	2	2	2	1	2	2	2	2
W.Avg.	2.4	2.2	2.2	2.2	1.8	0.4	2.2	2.2	2.2	2.4

S –Strong (3), M-Medium (2), L- Low (1) Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO								
CU	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	2	3	2				
CO2	2	2	2	2	2				
CO3	2	2	2	2	2				
CO4	3	2	2	3	3				
CO5	2	2	3	2	2				
W.Avg.	2.4	2	2.2	2.4	2.2				

			Semester III				
Core		irse Code:	Advanced Instrumental Methods of	Т	Credits: 5	Hou	rs : 5
Cole	5	540303	Analysis	I	credits. 5	1100	13.5
		I	Unit – I				
Object	tive 1		stand various spectroscopic techniques e and Molecular spectroscopy.	s lik	ke AAS, A	ES, Y	K-ray
Atomic	and M	Iolecular Sp	ectroscopy			(18	Hrs)
			f electromagnetic radiations - Electronic spe				
			nciple and instrumentation - Atomic Emis				
			Atomic Absorbance Spectroscopy – X-ray				
			inciple and instrumentation – Fourier Trans				
Ultravio	olet-Vis		copy – Raman Spectroscopy – Ultraviolet Pl				y.
Outco	me 1		nts will apply this knowledge to the	ch	aracterizatio	n of	K3
		nanomater					
		To comm	Unit – II	100	and types	of al	ootuo
Object	ivo 7		ehend about electroanalytical techniqu				
Object	live 2	•	methods such as potentiometry, could ry, and pulse voltammetry.	omet	ry, voltame	ury, c	cyclic
Flectro	analyt	ical Technic				(18	Hrs)
			ytical techniques – Electrochemical cells	_ т	mes of elect		
			Amperometry – Conductometry – Electrog				
			ametry – Coulometry and Impedance analysi				
_			ts will understand the electroanalytical te		uues for real-	time	
Outco	me 2	application			1		K2
			Unit – III				
Object	tive 3	To underst XPS and N	and advanced characterization technique	es lil	ke SEM, ED	AX, 7	ΓEM,
Micros	copic a	nd Elementa				(18	Hrs)
			ciple – Instrumentation and analysis – Sc	anni	ng Electron		
			ng Microscopy (STM) – Atomic Force Micro				
Electron	n Micro	oscopy (TEM). Elemental Analysis: Principle – Instrument	ntatio	on and Analys	sis – 2	X-ray
Photoel	ectron	Spectroscop	y (XPS) – X-ray Diffraction (XRD) an	d Ei	nergy Disper	sive 2	X-ray
Spectro	scopy (EDAX) – M	ass Spectroscopy – Nuclear Magnetic Resona	ance	Spectroscopy	(NMI	R).
Outco	me 3		ts will appl <mark>y t</mark> he knowled <mark>g</mark> e of XRD, SEN			XPS	K3
Outeo	ine o	and NMR	to study the physicochemical properties of	mat	erials.		no
Object	ive 4	To underst	Unit – IV and thermal and surface analysis				
		Surface Ana				(18	Hrs)
			le and Instrumentation – Thermo Graving	etric	Analysis –		
			ential Scanning Calorimetry – Micro therma				
Princip	le and	instrumentat	on - BET (Brunauer, Emmett and Teller)	- S	Surface Area	Analy	ser –
Auger I	Electron	n Spectroscop	y (AES).				
Outco	me 4		nts will be able acquire more knowle	<u> </u>	-	ciple,	K2
Outco	IIIC 7	instrument	ation and applications of thermal and sur	face	techniques.		K2
			Unit – V				
Objecti			erstand the electrical and thin film charact	eriza	ation.		
		aracterizatio		_			Hrs)
		•	as a function of temperature – Hall effect				
			npedance spectroscopy – DC electrical resi	stivit	y – Activatio	n ene	rgy –
	-		pacitances – Relaxation times of dipoles.				
		racterizatio		1	Manut	1 0	. 4 . 1
		n of thin film	n characterization – Mechanical, Electri – Analysis of thin films – Interface phenome	ena–	Multilayer fi	lms.	ptical
	me 5	The stude	nts will able to compare the electr	rical	and thin	film	K4

Ahuja, S. (2006). *Comprehensive analytical chemistry*. *V.47: Modern instrumental analysis*. Elsevier. Aruldhas, G. (2014). *Molecular structure and spectroscopy*. PHI Learning.

Christian, G.D. (2004). Analytical chemistry. Wiley.

Skoog, D. A., Holler, F. G., & Nieman, T. A. (2004). Principles of Instrumental Analysis, Thomson Brooks/Cole Asia Pvt. Ltd., Singapore, 5, 4-7.

Willard, H.H. (2012). Instrumental methods of analysis. CBS.

- Willard, M., Meritt, L. L., Dean, J. A., & Settle, F. A. (1986). *Instrumental methods of analysis*, CBS Publishers and Distributors. CBS Publishers, 580, 626.
- Rawesh Kumar (2022) *Surface Characterization Techniques: From Theory to Research*, Walter de Gruyter GmbH & Co KG Publishers.
- Simonpietro Agnello (2021) Spectroscopy for Materials Characterization, John Wiley & Sons Publishers.

Elsevier (2012) Thermal Analysis, Academic Press Publishers.

F. James Holler & Stanley R. Crouch (2018) *Skoog and Wests, Fundamentals of Analytical Chemistry*, Cengage Learning Publishers.

Online resources:

https://link.springer.com/chapter/10.1007/978-3-319-27013-5_4- Advanced Characterization Techniques

https://link.springer.com/book/10.1007/978-3-319-92955-2 - Handbook of Materials Characterization https://link.springer.com/chapter/10.1007/978-3-662-47314-6_6 - Advanced Characterization Techniques

K1-Remember K2-Understand K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
------------------------------------	------------	-------------	-----------

Name of the Course Teacher: Dr. C. Karthikeyan

Course Outcome (CO	Vs Programme Outcomes (1	PO)

C0	PO PO									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	2	10-1	3	1	2	3
CO2	3	2	2	2	2	1	2	2	2	2
CO3	2	3	2	3	2	V - 1	3	1	3	3
CO4	2	2	2	2	2	1	2	1	2	2
CO5	2	2	1	2	1	100	2	2	1	2
W.Avg.	2.4	2.4	1.8	2.4	1.8	0.4	2.4	1.4	2.0	2.4

S –Strong (3), M-Medium (2), L- Low (1) Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	1	1	2	2				
CO2	2	2	3	2	2				
CO3	2	1	2	2	2				
CO4	3	2	2	2	2				
CO5	1	1	1	1	1				
W.Avg.	2.2	1.4	1.8	1.8	1.8				
S	Strong (3) M_M	dium(2)	I I OW	(1)				

			Semester-III				
Core	Co	urse Code : 540307	Energy Practical- III	Р	Credit: 4	Hours :	8
Object	ive 1	To fabricat	Fabrication of Solar e photo anode/cathode mate		n-n heteroiu	nction and D	SSC.
0			e/cathode materials by solution				0000
•		-	ojunction solar cells.	on gro	will teeninque		
		1	tized solar cells.				
Outcon	ne 1	materials an	s will be able to fabricate so d p-n heterojunction. cterization of Solar Cell an			ode/cathode	K6
Object	ive 2		the performance of solar co	-	-	citors	
 5. Eff 6. Per 7. Per 8. Per 	èct of forma forma forma	temperature an nce testing of s nce evaluation nce test on sola	lye-sensitized solar cells. d light intensity on solar cell olar PV cells. of supercapacitors. ar flat plate collector. of battery using PV panel.	charao	eteristics.		
Outcon	ne 2	The student and superca	s will be able to analyze t pacitor.	he pe	rformance o	f solar cells	K4
Object 10. P		method	Bioenergy biodiesel from vegetable oil el-alkaline transesterification.	6	gh the alkali	ne transesteri	fication
Outcor	•	The student	s will be able to prepare line transesterification.		iesel from v	egetable oil	K6
			Energy Aud	lit	1		
Object	ive 4	To prepare a	n effective audit plan and a	assess	the energy u	tilization	
11. Pre	parati	on of energy au	dit plan and analyzing energ	y audi	t data.		
Outcon	ne 4	The student utilization.	s will develop an audit _l	plan a	ind analyze	the energy	K4
					*Any other e	equivalent expe	eriments
S. Karup Online https:// https://o	pucha pucha resour www.a	amy. (2015). <i>Na</i> amy. (2015). <i>En</i> cces: sciencedirect.co brary.wiley.com	anoscience and technology, L nergy Science, Laboratory M om/science/article/abs/pii/S0 m/doi/abs/10.1002/97811197	anual. 927024 60801	United Agen 4822003841#	cies.	ies.
https://li	nk.spr	inger.com/chap	0ter/10.1007/978-3-030-8978 Name of t			Dr. S. Karupp Dr. C. Karthik Dr. A. Nithya Dr. S. Nataraj	eyan

CO		РО								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	1	3	2	2	3
CO2	3	2	3	2	2	1	2	2	2	3
CO3	2	1	1	1	1	1	2	1	1	1
CO4	2	2	1	1	1	1	2	1	1	1
W.Avg.	2.5	1.8	2.0	1.5	1.5	1.0	2.3	1.5	1.5	2.0

Course Outcome (CO) Vs Programme Outcomes (PO)

S –Strong (3), M-Medium (2), L- Low (1)

СО			PSO	0				
CO	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	2	2	2	2			
CO2	3	1	2	2	2			
CO3	2	1	2	2	2			
CO4	2	2	-10	1	1			
W.Avg.	2.5	1.5	1.8	1.8	1.8			

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

				Semes	ter- IV				
Core		urse Code: 540999	Disse	rtation/ Proje	ect Report	Р	Credit: 14	Hou	rs : 30
				Literature	Collections				
Objectiv	e 1	To gain a be	tter unde	erstanding of t	he literature co	ollection	process.		
Outcome	e 1	The student related to th	•		eledge about c	ollecting	g relevant lite	erature	K2
			S	ynthesize of]	Nanomaterial	S			
Objectiv	e 2			cture materials ental applicat	s by physical, ions.	chemica	al and biologic	cal metl	hods for
Outcom	e 2	The student	s will dev	velop nanostru	ctured materia	als using	g various meth	nods.	K6
			Cha	racterization	of Nanomate	rials			
Objectiv	e 3	To analyze	the physi	cochemical pi	operties of sy	nthesize	d materials.		
Outcome	e 3		-	tematically an ized materials	nalyze and con	mpare tl	he physicoche	emical	K4
			ñ,		ce Analysis	S.			
Objectiv	e 4		-		e prepared ma eries, biodiese		-	-	ons such
Outcom	e 4	The student	s will eva	aluate the perf	ormance of th	e prepar	ed materials.		K5
		Pre	paration	of Thesis and	d <mark>V</mark> iva-Voce l	Presenta	ntion		
Objectiv	e 5	To systemic the Viva-Vo		pile the entire	e research wo	·k into a	thesis and p	resent i	t during
Outcom	e 5	The student research wo		quire notewoi	thy knowledg	e and sl	cills related to	o their	K1- K6
Online R	esour	ces:		di la					
https://pul	os.acs	.org							
https://pul	os.rsc	org							
https://ww									
1		evier.com							
https://linl	c.spri	nger.com		1					
K1-Remen	nber	K2-Unde	rstand	K3-Apply	K4-Analyze	K	5-Evaluate	K6-0	Create
		•		N	ame of the Co	urse Te	acher: Dr. S. I	Zarunni	uchamy

СО		РО								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	2	1	2	1	2	1	1	1
CO2	3	3	2	3	2	2	3	3	2	3
CO3	3	2	3	1	2	1	2	1	2	3
CO4	3	3	2	3	3	2	3	2	2	3
CO5	3	3	2	2	3	2	3	2	2	3
W.Avg.	3.0	2.6	2.2	2.0	2.4	1.6	2.6	1.8	1.8	2.6

Course Outcome (CO) Vs Programme Outcomes (PO)
--

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome	(CO) Vs Programme Specific Outcomes (PSO)
-----------------------	---

CO	PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	1	2	2				
CO2	3	3	3	3	3				
CO3	3	2	2	2	2				
CO4	3	3	3	3	3				
CO5	3	2	3	3	3				
W.Avg.	3	2.4	2.4	2.6	2.6				

	DISCIPLIN	E SPECIFIC ELECTIVE C	COU	RSE (DSE)		
DSE	Course Code: 540501	Biofuels	Т	Credits: 4	Hours	s : 4
		Unit – I			1	
Objective 1	To understand bio characteristics of b	omass resources, biomass a biomass.	ssess	ment, biomass	to biofue	el and
Introduction	<u> </u>				(14]	Hrs)
		and characteristics - Tech				ent –
Application of	remote sensing in for	rest assessment – Biomass es	timati	ion – Biomass te	o biofuel.	
Outcome 1	The students will b	e able to understand bioma	iss en	ergy.		K2
		Unit – II				
Objective 2	solid and animal w	is generations of biofuel fe vaste.	edsto	ocks such as s		
Biofuel Gener					· ·	Hrs)
		eration: Starch – Sugar – Ve				
	tems – Husks – Woo ass – Cynobacteria – E	od chips – Fruit skins and placeting	peelii	ng. Third Gene	ration: Al	lgae –
		1	:	which alford	ata alva	V4
Outcome 2	I ne students will a	nalyze the accessibility of d	mere	ent blotuel feed	STOCKS.	K4
	To study the m	Unit – III	l h	aathanal bia	nuonanal	and
Objective 3	biobutanol.	roduction of biomethano	I, DI	loetnanoi, dio		
· · · · · · · · · · · · · · · · · · ·		anol and Biobutanol				Hrs)
		als, Feedstocks and Proce			Biomet	hanol,
Bioetnanol, B		tanol – Advantages and limit			duction	
Outcome 3	process.	analyze the suitability of v	ariot	is bioiueis pro	auction	K4
	_	Unit – IV				
Objective 4	To understand bio	diesel production technolog	y and	l feedstocks.		
Biodiesel						
					(14 H	
Introduction of		rganisms and raw materials			il product	tion –
Introduction of Treatment of	the feedstocks prior to	o production of the biodiesel	– Cu	irrent technolog	il product	tion – diesel
Introduction of Treatment of production –	the feedstocks prior to Purification of biodie		– Cu	irrent technolog	il product	tion – diesel
Introduction of Treatment of production – from single ce	the feedstocks prior to Purification of biodie Il oil.	o production of the biodiesel esel – Industrial production	– Cu of bio	urrent technolog odiesel – Biodi	il production pies of bio esel production	tion – odiesel uction
Introduction of Treatment of production –	the feedstocks prior to Purification of biodie Il oil.	o production of the biodiesel	– Cu of bio	urrent technolog odiesel – Biodi	il production pies of bio esel production	tion – diesel
Introduction of Treatment of production – from single ce Outcome 4	the feedstocks prior to Purification of biodie ll oil. The students will biodiesel.	o production of the biodiesel esel – Industrial production understand and apply t Unit – V	– Cu of bio he k	nrent technolog odiesel – Biodi nowledge to J	il product gies of bio esel produce	tion – odiesel uction K6
Introduction of Treatment of production – from single ce Outcome 4 Objective 5	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an	o production of the biodiesel esel – Industrial production understand and apply t	– Cu of bio he k	nrent technolog odiesel – Biodi nowledge to J	il product gies of bio esel produce	tion – odiesel uction K6
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen	o production of the biodiesel esel – Industrial production understand and apply t Unit – V Id biohydrogen production	– Cu of bio he k	nrent technolog odiesel – Biodi nowledge to p ologies and its	il product ies of bio esel produce produce limitation (15	tion – odiesel uction K6 ns. Hrs)
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ	o production of the biodiesel esel – Industrial production understand and apply t Unit – V Id biohydrogen production action – Mechanism of biogas	– Cu of bio he k	nrent technolog odiesel – Biodi nowledge to p ologies and its	il product ies of bio esel produce produce limitation (15	tion – odiesel uction K6 ns. Hrs)
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant –	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita	o production of the biodiesel esel – Industrial production understand and apply t Unit – V Id biohydrogen production action – Mechanism of biogas	– Cu of bio he k techn	Irrent technolog odiesel – Biodi nowledge to p ologies and its luction – Proper	il production of bio esel production produce limitation (15 rties of bio	tion – diesel uction K6 ns. Hrs) ogas –
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen:	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo	o production of the biodiesel esel – Industrial production understand and apply t Unit – V Id biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production	– Cu of bio he k techn	Irrent technolog odiesel – Biodi nowledge to p ologies and its luction – Proper	il production of bio esel production produce limitation (15 rties of bio	tion – diesel uction K6 ns. Hrs) ogas –
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – I	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy –	o production of the biodiesel esel – Industrial production understand and apply t Unit – V ad biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations.	– Cu of bid he k techn s proc meth	Irrent technolog odiesel – Biodi nowledge to p tologies and its duction – Propertodes – Ferment	il product ies of bio esel produce produce limitation (15 rties of bio rative hyd	tion – diesel uction K6 ns. Hrs) ogas – Irogen
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – I Outcome 5	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen.	o production of the biodiesel esel – Industrial production understand and apply t Unit – V Id biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production	– Cu of bid he k techn s proc meth	Irrent technolog odiesel – Biodi nowledge to p tologies and its duction – Propertodes – Ferment	il product ies of bio esel produce produce limitation (15 rties of bio rative hyd	tion – diesel uction K6 ns. Hrs) ogas –
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – I Outcome 5 Suggested Re	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings:	o production of the biodiesel esel – Industrial production understand and apply t Unit – V d biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production t	– Cu of bid he k techn s proc meth	Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog	il product ies of bio esel produce produce limitation (15 rties of bio rative hyd	tion – diesel uction K6 ns. Hrs) ogas – Irogen
Introduction of Treatment of production – from single ce Outcome 4 Dbjective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – 1 Outcome 5 Suggested Re Math, M.C. (2)	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings: 019).Non-Convention	o production of the biodiesel esel – Industrial production understand and apply t Unit – V d biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production t and Energy Sources. Yes Dee	– Cu of bid he k techn s proc meth	Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog	il product ies of bio esel produce produce limitation (15 rties of bio rative hyd	tion – diesel uction K6 ns. Hrs) ogas – Irogen
Introduction of Treatment of production – from single ce Outcome 4 Biogas and B Biogas Introd Biogas plant – Biohydrogen: production – I Outcome 5 Suggested Re Math, M.C. (2 Arvind, N.S. (2)	the feedstocks prior to Purification of biodic Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings: 019).Non-Convention 2013). Industrial biop	o production of the biodiesel esel – Industrial production understand and apply t Unit – V Id biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production t and Energy Sources. Yes Dee process technology. DPH.	– Cu of bid he k techn s proc meth techn Publi	Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog shers.	il product ies of bio esel produce produce limitation (15 rties of bio ative hyd gas and	tion – diesel uction K6 ns. Hrs) ogas – Irogen
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – I Outcome 5 Suggested Re Math, M.C. (2 Arvind, N.S. (Babu, V., Tha	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings: 019).Non-Convention 2013). Industrial biop pliyal, A., & Patel, G.	o production of the biodiesel esel – Industrial production understand and apply t Unit – V d biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production to al Energy Sources. Yes Dee process technology. DPH. K. (2014). Biofuels producti	– Cu of bid he k techn s proc meth techn Publi	Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog shers.	il product ies of bio esel produce produce limitation (15 rties of bio ative hyd gas and	tion – diesel uction K6 ns. Hrs) ogas – Irogen
Introduction of Treatment of production – from single ce Outcome 4 Biogas and B Biogas Introd Biogas plant – Biohydrogen: production – I Outcome 5 Suggested Ree Math, M.C. (2 Arvind, N.S. (Babu, V., Tha Cheng, J. (201	the feedstocks prior to Purification of biodic Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings: 019).Non-Convention 2013). Industrial biop pliyal, A., & Patel, G. 6). Biomass to renewo	o production of the biodiesel esel – Industrial production understand and apply t Unit – V d biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production t al Energy Sources. Yes Dee process technology. DPH. K. (2014). Biofuels producti able energy processes. CRC.	- Cu of bid he k techn s proc meth techn Publi on. Jo	Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog shers.	il producties of bio esel produce produce limitation (15 rties of bio ative hyd gas and ns.	tion – diesel uction K6 ns. Hrs) ogas – lrogen K5
Introduction of Treatment of production – from single ce Outcome 4 Objective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – I Outcome 5 Suggested Re Math, M.C. (2 Arvind, N.S. (Babu, V., Tha Cheng, J. (201	the feedstocks prior to Purification of biodic Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings: 019).Non-Convention 2013). Industrial biop pliyal, A., & Patel, G. 6). Biomass to reneword id.). (2013). Alternative	o production of the biodiesel esel – Industrial production understand and apply t Unit – V d biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production to al Energy Sources. Yes Dee process technology. DPH. K. (2014). Biofuels producti	- Cu of bid he k techn s proc meth techn Publi on. Jo	Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog shers.	il producties of bio esel produce produce limitation (15 rties of bio ative hyd gas and ns.	tion – diesel uction K6 ns. Hrs) ogas – lrogen K5
Introduction of Treatment of production – from single ce Outcome 4 Dbjective 5 Biogas and B Biogas: Introd Biogas plant – Biohydrogen: production – I Outcome 5 Suggested Re Math, M.C. (2 Arvind, N.S. (Babu, V., Tha Cheng, J. (201 Ferreira, G. (E Business M	the feedstocks prior to Purification of biodie Il oil. The students will biodiesel. To study biogas an iohydrogen uction – Biogas produ Advantage and limita Introduction – Biolo Hydrogen economy – The students will biohydrogen. adings: 019).Non-Convention 2013). Industrial biop pliyal, A., & Patel, G. 6). Biomass to reneword d.). (2013). Alternative fedia.	o production of the biodiesel esel – Industrial production understand and apply t Unit – V d biohydrogen production action – Mechanism of biogas ations. ogical hydrogen production Advantages and limitations. compare the production t al Energy Sources. Yes Dee process technology. DPH. K. (2014). Biofuels producti able energy processes. CRC.	– Cu of bid he k techn s proc meth techn Publi on. Jo ress (Irrent technolog odiesel – Biodi nowledge to p ologies and its duction – Proper ods – Ferment ologies of biog shers.	il production of bio esel produce produce limitation (15 rties of bio ative hyd gas and ns.	tion – diesel uction K6 ns. Hrs) ogas – Irogen K5

Sorensen, B. (2017). Renewable energy, 5th Edition. Academic Press.

Online resources:

https://link.springer.com/book/10.1007/978-3-319-07641-6 - Biomass and Bioenergy Processing and Properties

https://www.sciencedirect.com/book/9780124079090/bioenergy - Bioenergy Biomass to Biofuels https://harperandharley.org/pdf/bioenergy/ - Bioenergy

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
		-	Name of the Cou	rse Teacher: Dr.	S. Karuppuchamy

Course Outcome (CO) Vs Programme Outcomes (PO)

СО	РО											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	2	2	1	-	1	-	2	2	1	1		
CO2	2	1	1	-	1	-	2	2	1	1		
CO3	2	2	2	1	2	1	2	1	2	2		
CO4	2	2	2	3	2	1	2	2	2	2		
CO5	1	2	2	1100	2	1	2	2	2	2		
W.Avg.	1.8	1.8	1.6	1.0	1.6	0.6	2.0	1.8	1.6	1.6		

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO									
CO	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	1	1	2	1	1					
CO2	1	1	2	1	1					
CO3	2	1	2	2	2					
CO4	2	2	2	2	2					
CO5	2	2	2	2	2					
W.Avg.	1.6	1.4	2	1.6	1.6					

		DIS	CIPLINE SPECIFIC ELECTIVE C	OURSE	C (DSE)		
DSE		e Code:)502	Wind and Hydro Energy	Т	Credits: 4	Hou	rs : 4
	540	502	Unit – I				
Obje	ctive 1		erstand wind tower components, wi propellers.	ind turb	oine size class	ses, towe	rs and
Wind I	Energy		• •			(14	Hrs)
			tower components - Wind turbine				
			nerator – Power – Air density – Swept		Cube of wind	speed –	Height
and Wi	nd speed		n the Wind equation – Air density equ Idents will summarize the power		luction from	wind	
Outc	ome 1	turbines	S	er prou	luction from	i willu	K2
			Unit – II		• • • •	• •	e
Obje	ctive 2		erstand the wind chargers, grid-con wind farms, planning and designs.	inected	wind turbine	es, wind	tarms,
Wind I	Energy S		wind farms, planning and designs.			(15	Hrs)
	01	•	ons and parks: Wind chargers – Grid o	connecte	d wind turbin		
			Planning and designs – Economics				
		velopment			65 1		
		-	idents will compare the necessi	ity, pla	nning and	design,	K4
Oute	ome 2	transmi	ssion and components of the wind tu	urbine.	U	0	Κ4
			Unit – III				
Obje	ctive 3		ire more information about hydrol				
			assification of hydropower plants a	nd smal	I hydropowe		
	power P		f hydron over in India Classifica	tion of	1		Hrs)
			f hydropower in India – Classifica erview of micro – Mini and small hy				
			se studies.	yulo sys	iems – Status	or inyurv	spower
			dents will critically analyze the ro	le of hy	dronower nl	ants in	
Outc	ome 3		ty production.	ie or inj	uropower pr		K4
			Unit – IV				
Obje	ctive 4		prehend tidal power plants, wave j nd hydropower markets.	power p	lants, ocean	current	power
Hydro	power P	lants-II				(1	4 Hrs)
			er power plants – <mark>Storage</mark> power plar	nts – Pu	mped storage		
			ve power plants - Ocean current po	wer plan	nts – Hydrope	ower ma	rkets –
Outlool	k and dev	velopment	potential.				
Outcor	ne 4		dents will compare the importanc	ce of va	rious power	plants	K2
outeor		such as	tidal, wave, ocean and hydro.				112
		m •			61 1	•	4 4
Obje	ctive 5	Io gain India.	knowledge of hydro projects, the po	otential	of hydropow	er in noi	rtheast
Design	of Powe	r Plant				(14	Hrs)
			droelectric plant - Essential element	nts of l	nydroelectric		
			e - Initial and operation cost - Enviro	onmental	issues related	d to large	e hydro
projects	s – Poten		ro power in North East India.				
Outc	ome 5	The stu energy s	dents will analyze the necessity (of powe	er plants in	India's	K4
Sugges	ted Read		······································				
			nergy: theory and practice. PHI Learn	ning Pvt	. Ltd.		
		· ·		•			
Boyle,	U . (2012). Renewe	able Energy: Power for a Sustainable	1 111110.	0.11101.01		
Burton	, T., Jenk	ins, N., Sł	harpe, D., & Bossanyi, E. (2011). Wind	d energy	[,] handbook. W	•	
Burton. Ion Bo	, T., Jenk stan, Ad	ins, N., Sł rian V. Gl		<i>d energy</i> Anatoli	<i>handbook</i> . We Sochirean ((2012) R	esilient

KI-Kemember K2-Understand K3-Apply K4-Analyze K3-Evaluate K0-Create Name of the Course Teacher: Dr. C. Karthikeyan										
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create										
4441/12/9/2457/html										
1	dpi.com/2073-4441	/12/9/2457/htr	n - https://www.i	ndpi.com/2073						
	itpress.com/Secure/				001FU1.pdf					
http://web.mit.edu/windenergy/windweek/Presentations/Wind%20Energy%20101.pdf										
Online Resources:										
Rivkin, D. A., & Silk, L. (2013). Wind Energy. Jones & Bartlett Publishers.										
Rai, G.D. (1998). Non-Conventional Energy Sources. Khanna Publishers.										
Kothari, D.P. (2014). Wind Energy Systems and Applications. Narosa Publishing House.										

<u>Course Outcome (CO) vs riogramme Outcomes (rO)</u>	Course Outcome	(CO) Vs Programme Outcomes (PO)
---	----------------	------------------------------	-----

РО											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
1	2	1	-	1	-	2	2	1	2		
2	1	1	-	1	-	2	2	1	1		
1	2	2	1	2	1	1	1	1	2		
1	2	2	1	2	1	2	2	1	1		
1	2	2	1100	2	0.1	1	2	1	1		
1.2	1.8	1.6	0.6	1.6	0.6	1.6	1.8	1.0	1.4		
	1 2 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PO1 PO2 PO3 PO4 PO5 1 2 1 - 1 2 1 1 - 1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2	PO1PO2PO3PO4PO5PO6121-1-211-1-122121122121122121122121	PO1 PO2 PO3 PO4 PO5 PO6 PO7 1 2 1 - 1 - 2 2 1 1 - 1 - 2 1 2 1 1 - 2 1 1 2 2 1 2 1 1 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 1	PO1PO2PO3PO4PO5PO6PO7PO8121-1-22211-1-2212212111122121221221212212212112	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 1 2 1 - 1 - 2 1 2 1 1 - 1 - 2 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1		

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO									
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	1	2	1	1	1					
CO2	1	1	1	1	2					
CO3	1	1	2	2	1					
CO4	2	2	1	2	2					
CO5	1	2	2	1	1					
W.Avg.	1.2	1.6	1.4	1.4	1.4					

		DIS	SCIPLIN	E SPE	CIFIC EL	ECTIVE COU	RSE (I)SE)			
DSE		e Code: 0503	Advance		Application		Т	Cr	edits: 4	Hour	s : 4
					Unit -	- I					
Objec	ctive 1	To uno propert		the	nanoscale	significance,	type	of	nanocr	ystals,	and
Introd	uction	• •								(14 H	Irs)
Signifi	cance of	f nanosca	le – Surfa	ace ar	ea, quantum	confinement e	effect, 1	pene	tration o		
						sional – One di					
						s – Semicondu					
						and chemical –				-	
			icroscopic				1			1 1	
						4 1	1 4	• 1			TZ 2
Outco	ome I	The stu	dents will	be at		stand nanosca	le mate	erial	s.		K2
					Unit –						
Objec	tive 2					various synth	iesis m	etho	ds such	as phys	sical,
			l and bio	logica	ıl.						
		anomate								(15 I	
						arge – RF/DC 1					
						n – Spray p					
Hydrot	thermal	method	 Precipi 	tation	method -	Solvothermal	metho	od –	Sol ge	1 metho	od –
Electro	ochemica	al depos	ition and	1 Mi	icrowave i	rradiation me	thod.	Bio	ogical	Method	ls –
Phytos	ynthesis	- Physco	synthesis	– My	cosynthesis.	- SO					
Outco	ome 2					nthesize nan	ostruct	ure	materia	ıls via	K6
0400		physical	l, chemica	l and	biological		2.				
					Unit –						
Objec			n more kn	owled	dge about n	anocomposite anocomposite	proper	ties	and app		
	omposit									(15 Hr	
Introdu	action –	Metal-Me	etal oxide	nanoc	omposites -	- Metal oxide-P	olymer	nan	ocompos	sites – C	CNT-
Metal	oxide n	anocompo	osites – P	repar	ation, Chem	nical structure,	Proper	ties	and App	plication	ns of
nanoco	omposite	materials	5.								
Outco	ama 3	The stu	dents will	disti	nguish the	advantages of	nanoc	omp	osite ma	terials	K4
Outco	ome 5	and ana	lyze the a	pplic	ations of na	<mark>noco</mark> mposite n	nateria	ls.			K4
					Unit –	IV					
01.	· •	To stud	ly the de	sign	factor for	biomaterials,	classif	icati	on of b	iomate	rials,
Objec	ctive 4	bioplast	ics, magn	etic n	naterials an	d classification	1.				-
Bioma	terials a	and Magr	netic Mate	erials						(14	Hrs)
Bioma	terials: 1	Historical	developm	nent o	f biomateria	als – Design fa	ctors fo	or bi	omateria	ls – Im	plant
						- Bioactive a					
					polymer – H						
						rials – Classif	ication	of 1	nagnetic	materia	als –
						ostriction - Cur					
-					-	er paramagnet				-	
nanosc					r			2	, r		
Oute		The stu	idents wi	ill ga	in notewor	thy knowledg	ge abo	ut 1	he type	s and	_V 2
Outco	ome 4		eristics of				- -		• •		K2
					Unit –						
	ctive 5			e var	ious applica	tion of nanom	aterial	ls.			
		of Nanom									Hrs)
	-	-				rovskite solar				-	
						ectrical devices					
applica	ations –	Tissue er	ngineering	– Ca	ncer detecti	on – Biosensor	rs – M	edica	al implar	nts and	Self-
cleanir	ng.										
Outo	omo 5	The stu	udents w	vill d	evelop na	nomaterials f	or var	rious	energy	y and	K6
Juice	ome 5		mental ap								IXU

Gogotsi, Y. (2012). Nanomaterials handbook. CRC.

He, J. (2016). Nanomaterials in energy and environmental applications. Pan Stanford.

Hosokawa, M. (2009). Nanoparticle technology handbook. Elsevier.

Poole, Charles P. (2006). Introduction to nanotechnology. Wiley.

Wautelet, Michel. (2009). Nanotechnologies. IET.

- Edward L.Wolf. (2013). Nanophysics and nanotechnology: An introduction to modern concepts in Nanoscience. Wiley.
- Kannan M. Krishnan. (2016). Fundamentals and Application of Magnetic Materials, Oxford University Press Publishers.

Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen & Jack E. Lemons. (2012), *Biomaterials Science: An Introduction to Materials in Medicine*, Edition 3, Academic Press Publishers.

Online Resources:

https://onlinelibrary.wiley.com/doi/book/10.1002/9783527683772 - Nanomaterials and Nanocomposites: Zero- to Three-Dimensional Materials and Their Composites

https://link.springer.com/book/10.1007/978-981-19-1384-6 - Nanomaterials for Advanced Technologies

https://libguides.utdallas.edu/nanotechnology-nanoscience-nanomaterials-guide/sources/booksK1-RememberK2-UnderstandK3-ApplyK4-AnalyzeK5-EvaluateK6-CreateNorma of the Course Toosher Dr. C. Karthilsauer, Dr. A. Nithy

Name of the Course Teacher: Dr. C. Karthikeyan, Dr. A. Nithya

Course Outcome (CO) Vs Programme Outcomes (PO)

CO	PO												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	3	2	2	1	1	1	2	1	2	2			
CO2	3	3	2	2	2	2	3	2	2	1			
CO3	2	2	2	2	2		2	2	1	1			
CO4	1	1	1	1	1	1	2	2	2	1			
CO5	2	2	2	1	2	1	2	3	1	2			
W.Avg.	2.2	2.0	1.8	1.4	1.6	0.6	2.2	2.0	1.6	1.4			

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

СО	PSO										
CU	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	3	1	2	1						
CO2	2	2	2	1	2						
CO3	2	2	2	2	2						
CO4	2	2	2	2	2						
CO5	1	2	1	1	1						
W.Avg.	2	2.2	1.6	1.6	1.6						

		DIS	CIPLINE S	PECIFIC EL	ECTIVE COU	RSE (D	OSE)	
DSE		e Code:		Nuclear Ene	ergy	Т	Credits: 4	Hours :
222	54	0504				-		4
					iit-I			4 6
Object	tive 1			tor shielding	reactions, nucl	lear r	eactors, neat	transfer
Nuclear	· Reacti			8				(15 Hrs)
					activity – Deca			
					ng reactor – Des			
					reactors - Re	actor s	shielding – Pa	rticle and
electrom	nagnetic			vity and radiat				
Outco	me 1			nderstand nu and reactor s	clear reactions	, nucle	ar reactors, he	at K2
		transier	teeninques	Unit-	<u> </u>			
Object	ive 1	To edu	cate the nu		cle, uranium	produc	ction, purificat	ion, and
Object	live 2				rium and beryll		-	
Reactor								(15 Hrs)
					els – Types of 1			
					d UF ₆ – Other f		ke Zirconium –	Thorium –
Berylliu	m – Ste				- Cooling – Shie			
			0		nowledge about		•	
Outco	me 2		-	-	ation, and nucle	ear fue	ls like zirconiu	m, K2
		thorium	and berylli					
			Scall	Unit-				
Object	tive 3				es, spent fuel o lvent extraction			f solvent
Reproce	essing					- 1 - 1		(14 Hrs)
-	0	veles – Sp	pent fuel ch	aracteristics –	Role of solve	nt extr	action in Repro	```
					ctor vessel wall			
	Ŭ				j <mark>uire mor</mark> e info			
Outco	me 3				stics, the role			
		-	-		on equipment.			
				Unit –		2		•
Object	ivo 1	To learn	n fuel eleme	nt dissolution	n, precipitation	proces	ss, ion exchang	e, redox,
Object	live 4	purex, r	efining, isot	opes and prin	iciples of isotop	e sepa	ration.	
		Reactor P						(14 Hrs)
Processe	es to be	considere	ed – 'Fuel E	lement' Disso	lution – Precipi	tation 1	process – Ion e	xchange –
					and Thorax pro	ocesses	– Oxidative sla	agging and
Electro -	– Refini	-		ples of isotope	-			
Outcom	e 4		0		edge about fu			n , K2
Outcom		precipit	ation proces		d principles of	isotopo	e separation.	112
				Unit -		_		
01.	_				tion about nu			
Objectiv	ve 5				the internation	nal con	vention on safe	ty aspects
	D'			ds prevention	1.			(14 11)
			diation Prot		Ilution and 1	L. ro	hotoment T	(14 Hrs)
• •			•		ollution control			
					prevention – P			
system - Impurity	-		roi oi water	quanty – Con	trol parameters	– Soure	ces of reactor in	npurities –
Outcom			dents will an	alvze the cha	llenges of hand	ling nu	ıclear waste.	K4
				v				

Kothari, D.P. (2014). Renewable Energy Resources. PHI Learning.

Math, M.C. (2019). Non-Conventional Energy Sources. Yes Dee Publishers.

Nicholas Tsoulfanidis. (2012). Nuclear Energy; Selected Entries from the Encyclopedia of Sustainability Science and Technology. Springer Science and Business Media.

Rai, G.D. (1998). Non-Conventional Energy Sources. Khanna Publishers. Delhi.

Raymond L. Murray, Keith E. Holbert. (2014). Nuclear Energy: An Introduction to the Concepts, system, and Application of Nuclear Processess, Edition 7. Elsevier Publishers.

Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.

Online resources:

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118043493 Nuclear Energy Encyclopedia: Science, Technology, and Applications

https://link.springer.com/book/10.1007/978-3-030-72670-6 - Nuclear Power Explained https://www.sciencedirect.com/book/9780124166547/nuclear-energy - Nuclear Energy An

Introduction to the Concepts, Systems, and Applications of Nuclear Processes

K1-Remember	K2-Understand	nderstand K3-Apply K4-Analyze		K5-Evaluate	K6-Create					
Name of the Course Teacher: Dr. S. Natarajan										

Course Outcome (CO) Vs Programme Outcomes (PO)

СО	РО									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	1		1	-	2	2	1	2
CO2	2	1	1	1-5	1	-	2	2	1	1
CO3	1	2	2	2	2	1	1	1	-	2
CO4	1	2	2	2	1	1	2	1	2	1
CO5	1	2	2	1	2	1	1	2	1	2
W.Avg.	1.4	1.8	1.6	1.0	1.4	0.6	1.6	1.6	1.0	1.6

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO			PSO		
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	1	1
CO2	1	1	2	1	2
CO3	1	1	2	2	1
CO4	2	1	1	2	1
CO5	1	2	2	1	1
W.Avg.	1.4	1.4	1.6	1.4	1.2

		DIS	CIPLINE SPECIFIC ELECTIVE COUR	RSE (D	SE)			
DSE		rse Code: 40505	Climate Change	Т	Credits: 4	Hour	s : 4	
			Unit – I					
Object	ive 1	To under climate cl	stand the important contemporary top nange.	ics in	the field of	energy	and	
Introdu	ction		~~~~~			(14	Hrs)	
			nge: Global consensus, GHGs emission an					
			edictions and impacts - Clean energy techn					
			ares to reduce GHGs – Role of renewable		y – Evidence	of econ	omic	
impacts	impacts of climate change and economics of stabilizing greenhouse gases.							
Outcom	ne 1		ents will be able to know important conte	mpora	ary topics in	the	K2	
outton		field of en	ergy and climate change.					
			Unit – II					
Object			about the overview of climate change pol	icies.				
			nate Changes		•,• ,•	(14]		
	0		to Protocol and CDM – Governments polic		0	-		
			climate change – Nationally Appropriate	Mitig	ation Action	s (NAM	lA) –	
Intended	1 Natio		mined Contributions (INDCs).	•	C 1. /			
Outcon	me 2	The stude policies.	ents gain more knowledge about the ove	erview	of climate	change	K2	
		1	Unit – III					
Objective 3 To understand the carbon dioxide emission due to energy conversion and alternative resources on reduction of CO ₂ emission.								
Carbon dioxide (CO ₂) Emissions (15 Hrs)								
Carbon	dioxid	e (CO ₂) em	issions due to energy conversion – combu	stion p	physics – cas	e studie	s and	
			technologies and (ii) different resources us					
			n and alternative resources on reduction c					
			FCCC baseline methodologies for different	conve	rsion process	– Estim	ation	
of emiss	sion fro		el combustion – Case studies.					
Outcor	me 3	The stude CO ₂ emiss	ents will be able to compare the causes sion	and co	ontrol meas	ures of	K4	
			Unit – IV	ľ.,				
Object	ive 4	To acqui mechanis	re advanced knowledge about carbor ms.	ı cred	lit and car	bon tra	ading	
Carbon			STADLO EXCELLE				Hrs)	
Concept	t – C	ommerce	of carbon market, Environmental trans	format	ion fund –	Techno	ology	
perspect	tive: St	rategies for	technology innovation and transformation	ı — Fut	ture prospect	/limitati	on of	
carbon t	rading	mechanism						
Outcon	me 4		ents gain noteworthy knowledge about c nechanisms.	arbon	credit and	carbon	K2	
		0	Unit – V					
Object	ive 5	To under	stand the methodologies for carbon footp	orint.				
Carbon	footp	rint				(15)	Hrs)	
			assessment/Carbon footprint: Estimation	of er	nission fron			
			ir composition - Fuel to energy conversion					
Emissio	n fron	n major sec	tors (Industry - Transport - Agriculture	- Doi	mestic – Ser	vice) –	Case	
example	es for e	ach sector.						
Outcon	me 5	The stude	nts will analyze the impact of carbon foo	otprint	•		K4	

Basile, A., & Nunes, S. P. (Eds.). (2011). Advanced membrane science and technology for sustainable energy and environmental applications. Wood head.

Boyle, G. (2012). Renewable energy: Power for a sustainable future. Oxford.

Everett, R., Boyle, G., Peake, S., & Ramage, J. (2012). *Energy systems and sustainability: Power for a sustainable future.* Oxford University Press.

Quaschning, V. V. (2010). Renewable energy and climate change. Wiley.

Singh, M.P. (2010). Future energy sources. Pearl Books.

Online Resources:

https://cup.columbia.edu/book/climate-change/9780231172837

https://www.cambridge.org/highereducation/books/introduction-to-modern-climat

change/AD26BD3227322A87F72BEEA655AB1CF7#overview

https://krishi.icar.gov.in/jspui/bitstream/

K1-Remember	Remember K2-Understand		K3-Apply K4-Analyze		K6-Create				
Name of the Course Teacher: Dr. C. Karthikeyan, Dr. S. Natarajan									

Course Outcome (CO) Vs Programme Outcomes (PO)ss

СО	PO									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	1		1	1	2	2	1	-
CO2	1	1	1	-	1	2	2	2	1	1
CO3	1	2	2	1	2	01	1	1	-	-
CO4	1	2	1	1	1	1	2	1	1	-
CO5	1	2	2	1	2	2	1	2	1	1
W.Avg.	1.2	1.8	1.4	0.6	1.4	1.4	1.6	1.6	0.8	0.4

Course Outcome	(CO)	Vs Programme Specific Outcomes (PSO)
-----------------------	------	----------------------------------	------

СО			PSO	100	
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	1	1
CO2	1	2	2	1	2
CO3	1	1	2	2	2
CO4	1	1	1	2	2
CO5	2	2	2	2	2
W.Avg.	1.4	1.6	1.6	1.6	1.8

S -Strong (3), 1	M-Medium (2)	, L- Low (1)
-------------------------	--------------	--------------

		DIS	CIPLINE SPECIFIC ELECTIVE COUF	RSE (D	SE)		
DSE		rse Code: 5 40506	Energy Audit and Management	Т	Credits: 4	Hours	s : 4
		1	Unit – I				
Object			le more knowledge about energy audit a	nd ener	rgy managen		
	philos ment -	sophy and n - General p	eed of energy audit and management – De principles of energy management – Energy				ergy
Outcom		The stud general p	ents will be able to know more information rinciples of energy management, energ anagement strategy.				K2
		energy m	Unit – II				
Object	ive 2		rstand methodology and approach, r g the input energy requirements, fuel an				ency,
Energy Need –			lology and approach – Energy managem			(14 H	
			rking - Energy performance - Matching				
Maximi substitu		•	iency - Optimizing the input energy re	•		and en	ergy
Outco	me 2	maximizii	nts will be able to understand methodology ng system efficiency, optimizing the input e y substitution.	1	1 /	fuel	K2
		0	Unit – III			I	
Objective 3 To create awareness about methodologies of energy management and understand the importance of implementing energy-saving measures.							
Energy Organiz Account	Policy ing: I tability tion System	y – Purpose Location of y – Motivati	and Implementation – Perspective – Contents and Formulati energy manager – Role and respons ng – Motivation of employees – Requirements igning – Barriers, Strategies – Marketing a	ibilities ents foi	s of energy energy actio	manag n planni	on – er – ing –
Outco		The stude	ents will be able to analyze importance of	fenerg	v manageme	nt.	K4
outeo		The stud	Unit – IV	ener 5	, munugeme		
Object	ive 4		te first law of efficiency, second law of e iagram, energy balance sheet and manag				
Energy	Balan	ce & MIS		3		v	Hrs)
First lav	w of et	fficiency an	d Second law of efficiency - Facility as a	an ener	gy system –	Method	s for
			- Materials and Energy balance diagram			of loss	es –
÷			alance sheet and Management Information	•	n (MIS).		
Outco	me 4	The stude	ents will be able to apply laws of efficienc	ey.			K3
		-	Unit – V		•. •		
Object		savings, t	about instruments for energy audit a ypes and accuracy.	nd mo	nitoring ene	rgy, en	ergy
00		Instrumen				(14]	Hrs)
Instrum	ents to		monitoring energy and Energy savings – Ty			4	
Outco	me 5		ents will be able to know about instrume ag energy, energy savings, types and accu		energy audi	t and	K2
	umar,	Om Prakas	h, Prashant Singh Chauhan, & Samsher dits. CRC Press Publishers.	. (2020	0). Energy N	lanagen	nent:
Everett,	R., Bo	oyle, G., Pe	<i>plication of light and energy management.</i> ake, S., & Ramage, J. (2012). <i>Energy syste</i> Oxford University Press.		•		er for

Fornasiero, P., & Graziani, M	(2012).	Renewable	resources	and	renewable	energy:	a	global
challenge. CRC press.								

Kreith, F. (2008). Energy management and conservation handbook. CRC.

Monsef Krarti. (2020). Energy Audit of Building System: An Engineering Approach, Third Edition. CRC Press Publishers.

Murphy, W.R. (2014). Energy management. Elsevier.

Online Resources:

https://www.beeindia.gov.in/sites/default/files/1Ch3.pdf

https://www.routledge.com/Energy-Audit-and-Management-Concept-Methodologies-Proceduresand-Case/Kumar-Ganesan/p/book/9781032067797

https://link.springer.com/book/10.1007/978-3-658-33167-2

K1-Remember								
Name of the Course Teacher: Dr. A. Nithya, Dr. S. Natarajan								

Course Outcome (CO) Vs Programme Outcomes (PO)
--

СО					Р	0				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	-	1.5	-	1	2	1	1
CO2	1	2	2	V Mar	1	1	-	-	1	2
CO3	1	1	2	1	2	1	2	-	2	2
CO4	2	2	2	2	1	2	2	2	2	1
CO5	2	2	1	2	-	1	61	2	2	2
W.Avg.	1.6	1.8	1.8	1.0	0.8	1.0	1.2	1.2	1.6	1.6

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO			PSO		
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	1	1		1
CO2	1	2	2	_	1
CO3	2	2	2	2	2
CO4	2	2	2	1	1
CO5	1	1	1	1	1
W.Avg.	1.4	1.6	1.6	0.8	1.2

		DISCIPLIN	E SPECIFIC	CELEO	CTIVE CO	OURSE (DSE)		
DSE	Cou	rse Code: 540507	Research			T	Credits: 4	Hou	rs : 4
	Unit – I								
Object	ive 1	To study prima resources databa	•	and s	secondary	sources	, abstract	indexes	, web
Survey									Hrs)
		es – Journals, Pape							
		gy. Secondary Sou							
		of names. Abstrac	• I ·						
		technique index, o							
		mation. Web resou							
		- Impact Factor -							
		s, Google Scholar,		ry, Wi	ki – Datab	ases: Che	em Spider, S	science	Direct,
SciFind	er, We	o of Science, Scopu							1
Outco	me 1	The students wi						ndary	K1
		sources, abstract				atabases	•		
011				<u>nit – I</u>			•		
Object		To learn about th	ie preparatio	n and	publicatio	n of man	uscripts.	(4 -	••
		esis Writing	T (TT: 1 1	1	TTTTTTTTTTTTT		Hrs)
		technical writing							
thesis – Report of research work, laboratory observation – Records – Preparation of manuscript and									
poster – Writing review article and book reviews – Preparing research proposals for grants – Ethics in scientific publication – Formats for some national and international journals.									
								4	V
Outco	me 2	The students will				disserta	tion, and po	osters.	K6
		To study and I		nit – II					·
Object		To study good l environment, saf	e storage and					ory.	
		tory Practices and		AS.					Hrs)
		rinciples – Good La							
		Compliance monit							
		arel – Emergency p							
		us che <mark>micals</mark> – Pro							
Sofo at	osive n	azards – Procedure and disposal of w	for working v	v_{1n} ga	ses at press	sures abo	ve or below	atmospi	neric –
		Procedure for lab							
		laboratory waste –							
		tion of hazardous cl			and in the s	anntar y Sv	ewer system	- mem	cration
	1	The students wi			ahoratory	nractic	es and prof	tective	
Outco	me 3	environment.	n apply the	DUST 1	aboratory	practice	ts and pro		K3
		en vir onment.	U	nit – P	V				
		To study the				researc	h related	to ref	erence
Object	ive 4	management, and				i escui e	ii i chutcu	10 101	crence
Tools f	or Res	<u> </u>		L2.				(14	Hrs)
		Techniques for Re	esearch: Meth	hods to	o search 1	equired	information		,
		agement software l							
		ffice – Structure							
		agiarism.	0	0	0				
		The students will	be able to ut	tilize tl	he tools an	d technio	ques for ref	erence	1/2
Outco	me 4	management and							K3
		<u> </u>							ļ

		Un	nit – V						
	Objective 5 To study statistical analysis, precision and accuracy, Gaussian distribution,								
t and F-test, correlation and regression analysis.									
Statistical Ana						4 Hrs)			
	of errors – Precision								
	ults, positive and ne								
	ution of random er								
	ations from the Gau								
	ed value - Compari								
	o methods by F-tes	t – Gross err	ors and elimination	on of outlying res	sults – Gra	phical			
methods.		~ 1 .		1		. 2			
	regression Analysis		parameters – Co	rrelation coefficie	nt – adjust	ed r^2 –			
-	Interpolation and extrapolation of Data.								
Lintcome 5			·	v		K2			
	techniques includi	ng t and F-te	st, correlation a	nd regression ana	lysis.				
Suggested Rea	0	ionn out Wuiti	wa Wiloly						
	970) Thesis and Ass	0	•						
-	matters-IUPAC-IPC		•						
	(1967). Statistical M								
	and Gardson, L.R., <i>3rd Ed</i> . oxford univ		CS style guide- e	ffective communic	ation of sc	ientific			
Handbook Goo development	od Laboratory Prac t.	tice Quality	practices for reg	gulated Non clini	cal researd	ch and			
J.March (2007) interscience.). Advanced organi	c chemistry,	reaction, mecha	nism and structur	$e 6^{th} Ed.$	Wilely			
	ar, Meureen,S., Bar, laboratory studies				dard: Appl	ication			
Online Resour	ces:	110/3							
https://mfs.mkc	l.org/images/ebook/	Fundamental ⁶	%20of%20Resear	rc <mark>h%20</mark> Methodolo	gy%20and	%20S			
	%20by <mark>%20Y</mark> ogesh%		0Singh.pdf						
	gepub.com/kumar4e								
	o.com/product/resea	rch-methodol	ogy-9780199453	788					
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Creat	е			

Name of the Course Teacher: Dr. A. Nithya

со					Р	0				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	-	1	-	2	1	3	-	2	-
CO2	1	2	2	1	2	2	3	1	2	3
CO3	1	2	1	-	1	1	1	1	1	1
CO4	1	1	1	2	2	2	2	1	1	2
CO5	1	2	1	2	1	-	1	-	2	2
W.Avg.	1.2	1.4	1.2	1.0	1.6	1.2	2.0	0.6	1.6	1.6

Course Outcome (CO) Vs Programme Outcomes (PO)

СО		PSO							
CO	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	1	2	-	2	2				
CO2	2	2	3	3	2				
CO3	2	2	2	1	2				
CO4	1	2	2	2	2				
CO5	2	2	1	2	2				
W.Avg.	1.6	2	1.6	2	2				

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

S-Strong	(3),	M-Medium	(2),	L- Low	(1)
----------	------	-----------------	------	--------	-----

	NON-MAJOR ELECTIVE COURSES (for Other Departments)	
NME Co	ourse Code: 540701Basic Concepts in Energy SciencesTCredits: 2Hours : 3	
	Unit – I	
Objective 1	To understand energy resources, conventional and non-conventional energy resources, and energy needs.	gy
Photosynthesis		_
Outcome 1	The students will be able to understand and analyze, conventional and K4 non-conventional energy resources, and the importance of energy.	
	Unit – II	
Objective 2	To be knowledgeable on solar energy conversion, solar concentrators and oth applications, solar photovoltaic, fabrication and types of solar cells.	er
	n: Measurements and prediction – Flat plate collectors – Solar concentrators – Sol y conversions systems. Solar Photovoltaic: Principle of photovoltaic conversion of sol The students will gain more information about the types and fabrication of solar cells and apply this knowledge to develop solar K6	lar
	cells.	
Objective 3	To acquire about wind energy conversion, wind farms in India, advantages ar disadvantages of wind energy conversions.	nd
	ce: Meteorology of wind, India's wind energy potential and challenges – Distribution orld – Eolian features – Biological indicators – Wind measurement systems – Wind	on
Outcome 3	The students will acquire more information about wind energy conversion. Analyze the merits and demerits of wind energy. Unit – IV	
Objective 4	To know about the origins, uses of biomass energy, sources and characteristics biofuels like biodiesel, bioethanol and biogas.	of
Bioenergy	(11 Hrs)	
	nergy resources – Classification and estimation of biomass – Source and characteristi Biodiesel – Bioethanol – Biogas – Waste to energy conversions.	cs
Outcome 4	The students will understand the feasibility of energy recovery from biomass and biofuels. Apply this knowledge to prepare biodiesel.K6	
Objective 5	To understand geothermal energy, applications of geothermal energy, tidal pow plant and limitations of tidal power generation.	er
energy forms Materials selec	(11 Hrs) Geothermal sources – Advantages and disadvantages of geothermal energy over oth Geothermal energy in India: Prospects – Applications of geothermal energy ction for geothermal power plants. The students will analyze the applications advantages and challenges	
Outcome 5	of tidal and geothermal energy.	
Suggested Re	5	
	2014). Advanced renewable energy systems, Part –II, WPI Publishers.	
•	12). <i>Renewable Energy: Power for a sustainable future</i> . Oxford.	
	1019). <i>Non-Conventional energy sources</i> . Yes Dee Publishers.	
	98). Non-Conventional energy sources. Khanna Publishers.	
Rivkin, D. A.,	& Silk, L. (2013). Wind Energy. Jones & Bartlett Publishers.	

Rosen, M. A., & Koohi-Fayegh, S. (2017). Geothermal Energy. Wiley.								
Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.								
Online Resources:								
https://global.oup.com/academic/product/energy-science-9780198854401?cc=in⟨=en&								
https://bookboon.com/en/energy-environment-ebooks								
https://www.openaccessgovernment.org/category/ebooks/energy-ebooks/								
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. C. Karthikeyan								

Course Outcome (CO) Vs Programme Outcomes (P	<u>0)</u>
--	-----------

СО	РО											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	2	2	1	-	1	1	1	2	1	-		
CO2	3	3	2	3	3	-	3	3	2	3		
CO3	2	1	1	1	2	1	1	1	1	1		
CO4	2	2	2	2	2	1	2	2	2	2		
CO5	1	1	1	145	1	-	-	1	1	1		
W.Avg.	2.0	1.8	1.4	1.2	1.8	0.6	1.4	1.8	1.4	1.4		

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO	//	(AN)	PSO	2	
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1		1	-
CO2	3	2	2	3	2
CO3	1	1	1	1	1
CO4	2	2	2	2	2
CO5	1		1	1	-
W.Avg.	1.8	1.2	1.2	1.6	1

NON-MAJOR ELECTIVE COURSES (for Other Departments)											
NME	Co	urse Code:	Renewable Energy and Energy Storage Systems	T Credits: 2 Hours : 3							
			Unit-I								
Objectiv	ve 1		tand world energy use, energy scenario s of energy resources.	in global and India, and							
Introduc	tion			(10 Hrs)							
			ntional and Non-conventional energy resource								
0,		ion – Renew	vable energy scenario in Global and India -	Potentials – Achievements –							
Applicati	ons.										
Outcom	ne 1		ts will understand world energy utilization on in global and India scenarios.	n, and analyze energy K4							
Unit-II											
Objectiv	ve 2	To acquire	energy storage and comparative analysis.								
Energy S	Storag	ge		(11 Hrs)							
Introduction – Storage of mechanical energy – Electrical energy – Chemical energy – Thermal energy – Electrochemical energy Basics – Working – Advantages and disadvantages – Comparative analysis.											
Outcom			ts gain more information about energy stor								
Outcon		analysis.	100000000								
Unit-III											
Objective 3To know about energy storage systems, batteries and supercapacitors.											
Energy Storage System (11 Hrs)											
Introduction – Electrochemical cell – Batteries – Types of batteries – Working Principle – Advantages											
and disadvantages. Supercapacitor – Principle – Mechanism – Electrodes – Electrolyte – Applications.											
Outcom	ne 3	The studen and superc	ts will be able to analyze energy storage sys	tems such as batteries K4							
			Unit – IV								
	4	To learn m	ore info <mark>rmation about</mark> energy conversion sys	stems, photovoltaics and fue							
Objectiv		cells.	8 0-1-2-12								
		ersion System		(11 Hrs)							
		– Basic prin	ciples of Photovoltaics – Types of photovolta	aics – Fabrication methods –							
Applicati											
Fuel Cell	s - W		ples of fuel cells – Design – Types of fuel cells								
Outcome	e 4	The studen cells.	ts will analyze the technology behind the p	photovoltaics and fuel K4							
			Unit – V								
Objectiv	e 5		stand more knowledge about hybrid e	energy systems and their							
0		application	S.	(11 H)							
		gy Systems	ystems- Battery/Supercapacitor hybrid system	(11 Hrs)							
			c vehicles for transportations.	s – Fuel cell/Battery systems							
Аррпсан	0115. 1			about hybrid anarry							
Outcome	e 5		ts will be able to know more knowledge d their real-time applications.	K2							
Suggeste	d Rea										
Boyle, C	б. (20	12). Renewa	uble Energy: Power for a Sustainable Futur	e. Oxford.							
			3). Alternative energies: updates on prog								
		Media.	, <u>G. F. F. C</u>								
			ewable energy resources. PHI Learning.								
			onventional energy sources. Khanna Publish	lers							
			vable energy resources. Routleadge Publishe								
1 10011,	J. (4)	j. 1.0110 W	where the Sy i estimates i tourioudge i utilising	****							

Online resource	es:								
https://www.cambridge.org/highereducation/books/100-clean-renewable-energy-and-storage-for-									
everything/26E962411A4A4E1402479C5AEE680B08#overview									
https://pubs.aip.org/books/monograph/40/chapter-abstract/20688593/Energy-Storage-Systems-for-									
Renewab	Renewable-Energy?redirectedFrom=fulltext								
https://www.ebo	oks.com/en-in/series	/renewable-ene	rgy-sources-&-ene	ergy-storage/					
K1-Remember	K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. A. Nithya									

СО		РО											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	1	2	-	-	-	1	-	2	-	-			
CO2	-	1	-	1	1	-	-	1	-	-			
CO3	2	2	2	2	2	1	3	1	2	3			
CO4	3	2	2	2	2	-	2	1	2	2			
CO5	1	-	2	u no	2	1	2	2	2	2			
W.Avg.	1.4	1.4	1.2	1.0	1.4	0.6	1.4	1.4	1.2	1.4			

Course Outcome (CO) Vs Programme Outcomes (PO)

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO	SIF	1	PSO	6	
CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	24	4	1	7 - 3	-
CO2		1	1	/ . <u>-</u>	1
CO3	3	2	2	2	2
CO4	2	2	2	2	2
CO5	2	2	2	2	2
W.Avg.	1.4	1.4	1.6	1.2	1.4

NON-MAJOR ELECTIVE COURSES (for Other Departments)											
NME	Course Code:	Energy Conversion and Conservation Techniques	Т	Credits: 2	Hou	rs : 3					
		Unit-I									
Objectiv	e 1 To understa	and more information about solar and win	ıd en	ergy convers	ion.						
	on of Solar and Wi			- 80	(10 H	Irc)					
		for cooling – Pumping – Solar electricity	, gen	eration – Cor							
		onverters – Cross wind converters – Augme									
		l power and fuel generation – Commercial v									
Outcome		s will understand the energy conversion f				K2					
		Unit-II									
Objective	2 To acquire	wave energy conversion and pneumatic co	onver	rters.							
, v	on of Wave Energy				(11 H	Irs)					
	Pneumatic converters – Oscillating wave converter – Conversation of water flows – Elevated water –										
Conversati		6									
Outcome		ts will be able to gain more information and pneumatic converters.	abo	ut wave ener	rgy	K1					
Unit-III											
To understand the conversion of fuel and biological materials. Fuel production											
Objective 3 from biomass, generation of liquid biofuels and another conversion process.											
Conversion of Fuels and Biological Materials (11 Hrs)											
Fuel cell Technologies - Conversion of biological material - Heat production from biomass - Fuel											
production from biomass - Overview and Generation of Gaseous fuels - Generation of Liquid											
Biofuels – Other Conversion process – Conversion of Salinity Gradient Resources.											
Outcome 3The students will be able to understand the fuel conversion techniques.K2											
Unit – IV											
Objective 4 To understand energy conservation, conventional technique, reversible and irreversible cycles, Carnot, Stirling and Rankine cycle.											
Basics of l	Energy Conservati	on			(11 H	Irs)					
Energy Co	onservation – Conv	rentional Technique – Reversible and Irr	evers	ible cycles -	Carno	ot –					
Stirling an	d Rankine cycle. 🧹										
Outcome	4 The student	s gain mor <mark>e kn</mark> owledge about energy cons	serva	tion process		K4					
	1	Unit – V									
Objective		principles and methods of energy convers	ion a	nd control							
	ion to Energy Cons				(11 H						
		- Principles of Energy Conversion - Ene									
		- Waste Heat utilization - Combined Cyc									
	ors – Heat Regenera	tors – Heat Pipes – Heat pumps – Stirling I	Engin	ne – Instrumer	itation	and					
Control.		· · · · · · · · · · · · · · · · · · ·		• • •							
Outcome	5 Ine studen conversion	ts will be able to analyze the science rechniques	ben	ind the ener	rgy	K4					
	Readings:										
	· · · · · ·	ustrial bioprocess technology. DPH.									
		oduction to energy conversation. Volume. 2	2: En	ergy convers	ion cyc	cles.					
	Age international.		<i>.</i>	T							
Oakey, J.		ean Wave Energy Conversion.Dover Public flexible energy generation: Solid, liquid a			Woodł	nead					
		newable energy and climate change. Wiley.									
	B. (2015). <i>Renewa</i> ning. Elsevier.	ble energy: Physics, engineering, environn	ienta	l impacts, eco	onomic	s &					
		. Patrick, Ray E. Richardson & Brian , <i>Third Edition</i> . CRC Press Publishers.	W.	Fardo. (2020)), Ene	ergy					

Hossam	A.	Gabbar.	(2018).	Energy	Conservation	in	Residential,	Commercial,	and	Industrial
Fac	eiliti	es. John V	Viley & S	ons.						

Clive Beggs. (2010). Energy Management, Supply and Conservation: Edition 2. Routledge Publishers.

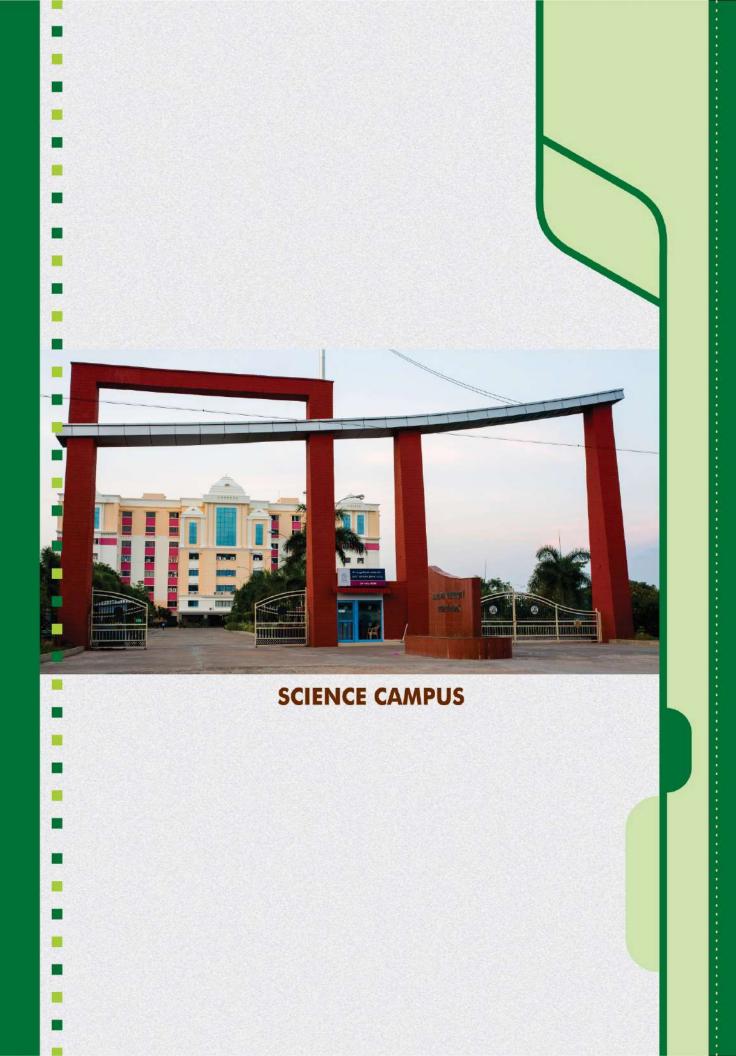
Online resources:

https://link.springer.com/book/10.1007/978-3-030-56164-2 - Energy Production, Conversion, Storage, Conservation, and Coupling

https://www.cambridge.org/core/books/abs/mechanical-universe/energy-conservation-and conversion/F8615611A0C4E7C843C3EEEF90767C1C

https://www.sciencedirect.com/journal/energy-conversion-and-management

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create					
Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. S. Natarajan.										


СО	РО											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	1	2	1	1	2	1	2	2	2	2		
CO2	1	1	1	1	-	-	-	-	-	-		
CO3	1	-	1	1	- 1	-	1	1	1	1		
CO4	2	2	2	2	2	1	-	1	1	1		
CO5	1	2	2	2	2	200 /	-	1	1	2		
W.Avg.	1.2	1.4	1.4	1.4	1.4	0.4	0.6	1	1	1.2		

Course Outcome (CO) Vs Programme Outcomes (PO)

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome (CO) Vs Programme Specific Outcomes (PSO)

CO	PSO										
0	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	2	h	1/	1	-						
CO2	-		1	1	1						
CO3	2	1	1	1	2						
CO4	2	1	2	2	2						
CO5	2	1	2	2	2						
W.Avg.	1.6	0.6	1.4	1.4	1.4						

